【推荐】(Keras)LSTM多元时序预测教程

2017 年 8 月 14 日 机器学习研究会


点击上方 “机器学习研究会”可以订阅



摘要
 

转自:爱可可-爱生活

 Neural networks like Long Short-Term Memory (LSTM) recurrent neural networks are able to almost seamlessly model problems with multiple input variables.

This is a great benefit in time series forecasting, where classical linear methods can be difficult to adapt to multivariate or multiple input forecasting problems.

In this tutorial, you will discover how you can develop an LSTM model for multivariate time series forecasting in the Keras deep learning library.

After completing this tutorial, you will know:

  • How to transform a raw dataset into something we can use for time series forecasting.

  • How to prepare data and fit an LSTM for a multivariate time series forecasting problem.

  • How to make a forecast and rescale the result back into the original units.

Let’s get started.

Tutorial Overview

This tutorial is divided into 3 parts; they are:

  1. Air Pollution Forecasting

  2. Basic Data Preparation

  3. Multivariate LSTM Forecast Model

Python Environment

This tutorial assumes you have a Python SciPy environment installed. You can use either Python 2 or 3 with this tutorial.

You must have Keras (2.0 or higher) installed with either the TensorFlow or Theano backend.

The tutorial also assumes you have scikit-learn, Pandas, NumPy and Matplotlib installed.

If you need help with your environment, see this post:

  • How to Setup a Python Environment for Machine Learning and Deep Learning with Anaconda



链接:

http://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/


原文链接:

https://m.weibo.cn/1402400261/4140526959983401

“完整内容”请点击【阅读原文】
↓↓↓


登录查看更多
24

相关内容

一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
教程 | 基于Keras的LSTM多变量时间序列预测
机器之心
20+阅读 · 2017年10月30日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Bivariate Beta LSTM
Arxiv
6+阅读 · 2019年10月7日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
4+阅读 · 2015年8月25日
VIP会员
相关VIP内容
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
教程 | 基于Keras的LSTM多变量时间序列预测
机器之心
20+阅读 · 2017年10月30日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
相关论文
Bivariate Beta LSTM
Arxiv
6+阅读 · 2019年10月7日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
4+阅读 · 2015年8月25日
Top
微信扫码咨询专知VIP会员