Mysql 索引你了解多少?

2018 年 1 月 17 日 性能与架构 杜亦舒

前言

Mysql 的索引是我们常用的,但实际了解多少呢?下面通过几个案例小问题来测验下,后面会有答案及相关解释

测试问题

问题1

下面的索引适合这个查询吗?

CREATE INDEX tbl_idx ON tbl (date_column)

SELECT COUNT(*)
  FROM tbl
 WHERE EXTRACT(YEAR FROM date_column) = 2017

选项:

A 很适合
B 不适合

问题2

下面的索引适合这个查询吗?

CREATE INDEX tbl_idx ON tbl (a, date_column)

SELECT *
  FROM tbl
 WHERE a = 12
 ORDER BY date_column DESC
 LIMIT 1

选项:

A 很适合
B 不适合

问题3

下面的索引适合这两个查询吗?

CREATE INDEX tbl_idx ON tbl (a, b)

SELECT *
  FROM tbl
 WHERE a = 38
   AND b = 1
   
SELECT *
  FROM tbl
 WHERE b = 1   

选项:

A 很适合
B 不适合

问题4

下面的索引适合这个查询吗?

CREATE INDEX tbl_idx ON tbl (text)

SELECT *
  FROM tbl
 WHERE text LIKE 'TJ%'

选项:

A 很适合
B 不适合

问题5

先看下这个索引和查询

CREATE INDEX tbl_idx ON tbl (a, date_column)

SELECT date_column, count(*)
  FROM tbl
 WHERE a = 38
 GROUP BY date_column

为了实现一个新的功能需求,会添加一个新的查询条件 b = 1

SELECT date_column, count(*)
  FROM tbl
 WHERE a = 38
   AND b = 1
 GROUP BY date_column

新的查询会如何影响性能?

选项:

A 两个查询的性能一致
B 无法判断,因为信息不足
C 第二个查询更慢了
D 第二个查询更快了

答案及解析

问题1

CREATE INDEX tbl_idx ON tbl (date_column)

SELECT COUNT(*)
  FROM tbl
 WHERE EXTRACT(YEAR FROM date_column) = 2017

答案 B 不适合

因为对索引列使用了函数,会使索引失效,使用下面的方式会更高效

SELECT COUNT(*)
  FROM tbl
 WHERE date_column >= DATE'2017-01-01'
   AND date_column <  DATE'2018-01-01'

问题2

CREATE INDEX tbl_idx ON tbl (a, date_column)

SELECT *
  FROM tbl
 WHERE a = 12
 ORDER BY date_column DESC
 LIMIT 1

答案 A 很适合

这个索引很好的支持了 where  order by

问题3

CREATE INDEX tbl_idx ON tbl (a, b)

SELECT *
  FROM tbl
 WHERE a = 38
   AND b = 1
   
SELECT *
  FROM tbl
 WHERE b = 1   

答案 B 不适合

索引只覆盖了第一个查询,第二个查询没能高效的使用索引

改变一下索引即可

CREATE INDEX tbl_idx ON tbl (b, a)

问题4

CREATE INDEX tbl_idx ON tbl (text)

SELECT *
  FROM tbl
 WHERE text LIKE 'TJ%'

答案 A 适合

LIKE 中虽然使用了 %,但是在尾部,是可以应用索引的

问题5

CREATE INDEX tbl_idx ON tbl (a, date_column)

SELECT date_column, count(*)
  FROM tbl
 WHERE a = 38
 GROUP BY date_column
 
SELECT date_column, count(*)
  FROM tbl
 WHERE a = 38
   AND b = 1
 GROUP BY date_column 

答案 C 第二个查询更慢了

第一个查询只需要对索引进行扫描,因为 select, where, group by中涉及的列都是索引中的,完全不需要访问实际的表,这种情况叫做索引覆盖,性能是极好的

而第二个查询就需要访问实际的表,根据 b = 1这个条件进行过滤

小结

上面是5个关于索引使用的小问题,比较简单,但也常被忽略,希望能对大家有点帮助


点击下面的 "阅读原文" 查看 文章列表

登录查看更多
0

相关内容

【2020新书】从Excel中学习数据挖掘,223页pdf
专知会员服务
93+阅读 · 2020年6月28日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
164+阅读 · 2020年5月14日
算法与数据结构Python,369页pdf
专知会员服务
165+阅读 · 2020年3月4日
【新书】Python中的经典计算机科学问题,224页PDF
专知会员服务
56+阅读 · 2019年12月31日
Python 3.8.0来了!
数据派THU
5+阅读 · 2019年10月22日
用 Python 开发 Excel 宏脚本的神器
私募工场
26+阅读 · 2019年9月8日
一文看懂怎么用 Python 做数据分析
大数据技术
24+阅读 · 2019年5月5日
干货 | 自然语言处理(3)之词频-逆文本词频(TF-IDF)详解
机器学习算法与Python学习
3+阅读 · 2017年12月19日
python数据分析师面试题选
数据挖掘入门与实战
6+阅读 · 2017年11月21日
项目实战:如何构建知识图谱
PaperWeekly
30+阅读 · 2017年9月14日
python pandas 数据处理
Python技术博文
4+阅读 · 2017年8月30日
漫画:什么是Bitmap算法?
程序猿
3+阅读 · 2017年8月19日
干货 | 详解scikit-learn中随机森林(RF)和梯度提升决策树(GBDT)的参数调优
机器学习算法与Python学习
6+阅读 · 2017年7月26日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
Arxiv
4+阅读 · 2018年7月4日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关资讯
Python 3.8.0来了!
数据派THU
5+阅读 · 2019年10月22日
用 Python 开发 Excel 宏脚本的神器
私募工场
26+阅读 · 2019年9月8日
一文看懂怎么用 Python 做数据分析
大数据技术
24+阅读 · 2019年5月5日
干货 | 自然语言处理(3)之词频-逆文本词频(TF-IDF)详解
机器学习算法与Python学习
3+阅读 · 2017年12月19日
python数据分析师面试题选
数据挖掘入门与实战
6+阅读 · 2017年11月21日
项目实战:如何构建知识图谱
PaperWeekly
30+阅读 · 2017年9月14日
python pandas 数据处理
Python技术博文
4+阅读 · 2017年8月30日
漫画:什么是Bitmap算法?
程序猿
3+阅读 · 2017年8月19日
干货 | 详解scikit-learn中随机森林(RF)和梯度提升决策树(GBDT)的参数调优
机器学习算法与Python学习
6+阅读 · 2017年7月26日
Top
微信扫码咨询专知VIP会员