作者丨数据派THU
来源丨DataScience
编辑丨极市平台
极市导读
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
import numpy as np
fig = plt.figure()
ax = plt.axes()
fig = plt.figure()
ax = plt.axes()
x = np.linspace(
0,
10,
1000)
ax.plot(x, np.sin(x));
plt.plot(x, np.sin(x));
plot函数即可:
plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x));
plt.plot(x, np.sin(x -
0), color=
'blue')
# 通过颜色名称指定
plt.plot(x, np.sin(x -
1), color=
'g')
# 通过颜色简写名称指定(rgbcmyk)
plt.plot(x, np.sin(x -
2), color=
'0.75')
# 介于0-1之间的灰阶值
plt.plot(x, np.sin(x -
3), color=
'#FFDD44')
# 16进制的RRGGBB值
plt.plot(x, np.sin(x -
4), color=(
1.0,
0.2,
0.3))
# RGB元组的颜色值,每个值介于0-1
plt.plot(x, np.sin(x -
5), color=
'chartreuse');
# 能支持所有HTML颜色名称值
plt.plot(x, x +
0, linestyle=
'solid')
plt.plot(x, x +
1, linestyle=
'dashed')
plt.plot(x, x +
2, linestyle=
'dashdot')
plt.plot(x, x +
3, linestyle=
'dotted');
# 还可以用形象的符号代表线条风格
plt.plot(x, x +
4, linestyle=
'-')
# 实线
plt.plot(x, x +
5, linestyle=
'--')
# 虚线
plt.plot(x, x +
6, linestyle=
'-.')
# 长短点虚线
plt.plot(x, x +
7, linestyle=
':');
# 点线
plt.plot(x, x +
0,
'-g')
# 绿色实线
plt.plot(x, x +
1,
'--c')
# 天青色虚线
plt.plot(x, x +
2,
'-.k')
# 黑色长短点虚线
plt.plot(x, x +
3,
':r');
# 红色点线
plt.plot(x, np.sin(x))
plt.xlim(
-1,
11)
plt.ylim(
-1.5,
1.5);
plt.plot(x, np.sin(x))
plt.xlim(
10,
0)
plt.ylim(
1.2,
-1.2);
plt.plot(x, np.sin(x))
plt.axis([
-1,
11,
-1.5,
1.5]);
plt.plot(x, np.sin(x))
plt.axis(
'tight');
plt.plot(x, np.sin(x))
plt.axis(
'equal');
plt.plot(x, np.sin(x))
plt.title(
"A Sine Curve")
plt.xlabel(
"x")
plt.ylabel(
"sin(x)");
plt.plot(x, np.sin(x),
'-g', label=
'sin(x)')
plt.plot(x, np.cos(x),
':b', label=
'cos(x)')
plt.axis(
'equal')
plt.legend();
ax = plt.axes()
ax.plot(x, np.sin(x))
ax.set(xlim=(
0,
10), ylim=(
-2,
2),
xlabel=
'x', ylabel=
'sin(x)',
title=
'A Simple Plot');
%matplotlib inline
import matplotlib.pyplot
as plt
plt.style.use(
'seaborn-whitegrid')
import numpy
as np
x = np.linspace(
0,
10,
30)
y = np.sin(x)
plt.plot(x, y,
'o', color=
'black');
rng = np.random.RandomState(
0)
for marker
in [
'o',
'.',
',',
'x',
'+',
'v',
'^',
'<',
'>',
's',
'd']:
plt.plot(rng.rand(
5), rng.rand(
5), marker,
label=
"marker='{0}'".format(marker))
plt.legend(numpoints=
1)
plt.xlim(
0,
1.8);
plt.plot(x, y,
'-ok');
plt.plot(x, y,
'-p', color=
'gray',
markersize=
15, linewidth=
4,
markerfacecolor=
'white',
markeredgecolor=
'gray',
markeredgewidth=
2)
plt.ylim(
-1.2,
1.2);
plt.scatter(x, y, marker=
'o');
rng = np.random.RandomState(
0)
x = rng.randn(
100)
y = rng.randn(
100)
colors = rng.rand(
100)
sizes =
1000 * rng.rand(
100)
plt.scatter(x, y, c=colors, s=sizes, alpha=
0.3,
cmap=
'viridis')
plt.colorbar();
# 显示颜色对比条
from sklearn.datasets
import load_iris
iris = load_iris()
features = iris.data.T
plt.scatter(features[
0], features[
1], alpha=
0.2,
s=
100*features[
3], c=iris.target, cmap=
'viridis')
plt.xlabel(iris.feature_names[
0])
plt.ylabel(iris.feature_names[
1]);
%matplotlib inline
import matplotlib.pyplot
as plt
plt.style.use(
'seaborn-whitegrid')
import numpy
as np
x = np.linspace(
0,
10,
50)
dy =
0.8
y = np.sin(x) + dy * np.random.randn(
50)
plt.errorbar(x, y, yerr=dy, fmt=
'.k');
plt.errorbar(x, y, yerr=dy, fmt=
'o', color=
'black',
ecolor=
'lightgray', elinewidth=
3, capsize=
0);
from sklearn.gaussian_process
import GaussianProcessRegressor
# 定义模型和一些符合模型的点
model =
lambda x: x * np.sin(x)
xdata = np.array([
1,
3,
5,
6,
8])
ydata = model(xdata)
# 计算高斯过程回归,使其符合 fit 数据点
gp = GaussianProcessRegressor()
gp.fit(xdata[:, np.newaxis], ydata)
xfit = np.linspace(
0,
10,
1000)
yfit, std = gp.predict(xfit[:, np.newaxis], return_std=
True)
dyfit =
2 * std
# 两倍sigma ~ 95% 确定区域
# 可视化结果
plt.plot(xdata, ydata,
'or')
plt.plot(xfit, yfit,
'-', color=
'gray')
plt.fill_between(xfit, yfit - dyfit, yfit + dyfit,
color=
'gray', alpha=
0.2)
plt.xlim(
0,
10);
%matplotlib inline
import matplotlib.pyplot
as plt
plt.style.use(
'seaborn-white')
import numpy
as np
def f(x, y):
return np.sin(x) **
10 + np.cos(
10 + y * x) * np.cos(x)
x = np.linspace(
0,
5,
50)
y = np.linspace(
0,
5,
40)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
plt.contour(X, Y, Z, colors=
'black');
plt.contour(X, Y, Z,
20, cmap=
'RdGy');
plt.cm.<TAB>
plt.contourf(X, Y, Z,
20, cmap=
'RdGy')
plt.colorbar();
plt.imshow(Z, extent=[
0,
5,
0,
5], origin=
'lower',
cmap=
'RdGy')
plt.colorbar()
plt.axis(aspect=
'image');
C:\Users\gdc\Anaconda3\lib\site-packages\ipykernel_launcher.py:4: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3.
after removing the cwd from sys.path.
contours = plt.contour(X, Y, Z,
3, colors=
'black')
plt.clabel(contours, inline=
True, fontsize=
8)
plt.imshow(Z, extent=[
0,
5,
0,
5], origin=
'lower',
cmap=
'RdGy', alpha=
0.5)
plt.colorbar();
%matplotlib inline
import numpy
as np
import matplotlib.pyplot
as plt
plt.style.use(
'seaborn-white')
data = np.random.randn(
1000)
plt.hist(data);
plt.hist(data, bins=
30, density=
True, alpha=
0.5,
histtype=
'stepfilled', color=
'steelblue',
edgecolor=
'none');
x1 = np.random.normal(
0,
0.8,
1000)
x2 = np.random.normal(
-2,
1,
1000)
x3 = np.random.normal(
3,
2,
1000)
kwargs = dict(histtype=
'stepfilled', alpha=
0.3, density=
True, bins=
40)
plt.hist(x1, **kwargs)
plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs);
counts, bin_edges = np.histogram(data, bins=
5)
print(counts)
[ 49 273 471 183 24]
mean = [
0,
0]
cov = [[
1,
1], [
1,
2]]
x, y = np.random.multivariate_normal(mean, cov,
10000).T
plt.hist2d(x, y, bins=
30, cmap=
'Blues')
cb = plt.colorbar()
cb.set_label(
'counts in bin')
counts, xedges, yedges = np.histogram2d(x, y, bins=
30)
plt.hexbin(x, y, gridsize=
30, cmap=
'Blues')
cb = plt.colorbar(label=
'count in bin')
from scipy.stats
import gaussian_kde
# 产生和处理数据,初始化KDE
data = np.vstack([x, y])
kde = gaussian_kde(data)
# 在通用的网格中计算得到Z的值
xgrid = np.linspace(
-3.5,
3.5,
40)
ygrid = np.linspace(
-6,
6,
40)
Xgrid, Ygrid = np.meshgrid(xgrid, ygrid)
Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()]))
# 将图表绘制成一张图像
plt.imshow(Z.reshape(Xgrid.shape),
origin=
'lower', aspect=
'auto',
extent=[
-3.5,
3.5,
-6,
6],
cmap=
'Blues')
cb = plt.colorbar()
cb.set_label(
"density")
import matplotlib.pyplot
as plt
plt.style.use(
'classic')
%matplotlib inline
import numpy
as np
x = np.linspace(
0,
10,
1000)
fig, ax = plt.subplots()
ax.plot(x, np.sin(x),
'-b', label=
'Sine')
ax.plot(x, np.cos(x),
'--r', label=
'Cosine')
ax.axis(
'equal')
leg = ax.legend();
ax.legend(loc=
'upper left', frameon=
False)
fig
ax.legend(frameon=
False, loc=
'lower center', ncol=
2)
fig
ax.legend(fancybox=
True, framealpha=
1, shadow=
True, borderpad=
1)
fig
y = np.sin(x[:, np.newaxis] + np.pi * np.arange(
0
,
2
,
0.5
))
lines = plt.plot(x, y)
# lines是一个线条实例的列表
plt.legend(lines[:
2
], [
'first'
,
'second'
]);
plt.plot(x, y[:,
0], label=
'first')
plt.plot(x, y[:,
1], label=
'second')
plt.plot(x, y[:,
2:])
plt.legend(framealpha=
1, frameon=
True);
import pandas
as pd
cities = pd.read_csv(
r'D:\python\Github学习材料\Python数据科学手册\data\california_cities.csv')
# 提取我们感兴趣的数据
lat, lon = cities[
'latd'], cities[
'longd']
population, area = cities[
'population_total'], cities[
'area_total_km2']
# 绘制散点图,使用尺寸代表面积,颜色代表人口,不带标签
plt.scatter(lon, lat, label=
None,
c=np.log10(population), cmap=
'viridis',
s=area, linewidth=
0, alpha=
0.5)
plt.axis(
'scaled')
plt.xlabel(
'longitude')
plt.ylabel(
'latitude')
plt.colorbar(label=
'log$_{10}$(population)')
plt.clim(
3,
7)
# 下面我们创建图例:
# 使用空列表绘制图例中的散点,使用不同面积和标签,带透明度
for area
in [
100,
300,
500]:
plt.scatter([], [], c=
'k', alpha=
0.3, s=area,
label=str(area) +
' km$^2$')
plt.legend(scatterpoints=
1, frameon=
False, labelspacing=
1, title=
'City Area')
plt.title(
'California Cities: Area and Population');
fig, ax = plt.subplots()
lines = []
styles = [
'-',
'--',
'-.',
':']
x = np.linspace(
0,
10,
1000)
for i
in range(
4):
lines += ax.plot(x, np.sin(x - i * np.pi /
2),
styles[i], color=
'black')
ax.axis(
'equal')
# 指定第一个图例的线条和标签
ax.legend(lines[:
2], [
'line A',
'line B'],
loc=
'upper right', frameon=
False)
# 手动创建第二个图例,并将作者添加到图表中
from matplotlib.legend
import Legend
leg = Legend(ax, lines[
2:], [
'line C',
'line D'],
loc=
'lower right', frameon=
False)
ax.add_artist(leg);
import matplotlib.pyplot
as plt
plt.style.use(
'classic')
%matplotlib inline
import numpy
as np
x = np.linspace(
0,
10,
1000)
I = np.sin(x) * np.cos(x[:, np.newaxis])
plt.imshow(I)
plt.colorbar();
plt.imshow(I, cmap=
'gray');
plt.cm.<TAB>
from matplotlib.colors
import LinearSegmentedColormap
def grayscale_cmap(cmap):
"""返回给定色图的灰度版本"""
cmap = plt.cm.get_cmap(cmap)
# 使用名称获取色图对象
colors = cmap(np.arange(cmap.N))
# 将色图对象转为RGBA矩阵,形状为N×4
# 将RGBA颜色转换为灰度
# 参考 http://alienryderflex.com/hsp.html
RGB_weight = [
0.299,
0.587,
0.114]
# RGB三色的权重值
luminance = np.sqrt(np.dot(colors[:, :
3] **
2, RGB_weight))
# RGB平方值和权重的点积开平方根
colors[:, :
3] = luminance[:, np.newaxis]
# 得到灰度值矩阵
# 返回相应的灰度值色图
return LinearSegmentedColormap.from_list(cmap.name +
"_gray", colors, cmap.N)
def view_colormap(cmap):
"""将色图对应的灰度版本绘制出来"""
cmap = plt.cm.get_cmap(cmap)
colors = cmap(np.arange(cmap.N))
cmap = grayscale_cmap(cmap)
grayscale = cmap(np.arange(cmap.N))
fig, ax = plt.subplots(
2, figsize=(
6,
2),
subplot_kw=dict(xticks=[], yticks=[]))
ax[
0].imshow([colors], extent=[
0,
10,
0,
1])
ax[
1].imshow([grayscale], extent=[
0,
10,
0,
1])
view_colormap(
'jet')
view_colormap(
'viridis')
view_colormap(
'cubehelix')
view_colormap(
'RdBu')
# 在I数组中人为生成不超过1%的噪声
speckles = (np.random.random(I.shape) <
0.01)
I[speckles] = np.random.normal(
0,
3, np.count_nonzero(speckles))
plt.figure(figsize=(
10,
3.5))
# 不考虑去除噪声时的颜色分布
plt.subplot(
1,
2,
1)
plt.imshow(I, cmap=
'RdBu')
plt.colorbar()
# 设置去除噪声时的颜色分布
plt.subplot(
1,
2,
2)
plt.imshow(I, cmap=
'RdBu')
plt.colorbar(extend=
'both')
plt.clim(
-1,
1);
plt.imshow(I, cmap=plt.cm.get_cmap(
'Blues',
6))
plt.colorbar()
plt.clim(
-1,
1);
# 读取数字0-5的手写图像,然后使用Matplotlib展示头64张缩略图
from sklearn.datasets
import load_digits
digits = load_digits(n_class=
6)
fig, ax = plt.subplots(
8,
8, figsize=(
6,
6))
for i, axi
in enumerate(ax.flat):
axi.imshow(digits.images[i], cmap=
'binary')
axi.set(xticks=[], yticks=[])
# 使用Isomap将手写数字图像映射到二维流形学习中
from sklearn.manifold
import Isomap
iso = Isomap(n_components=
2)
projection = iso.fit_transform(digits.data)
# 绘制图表结果
plt.scatter(projection[:,
0], projection[:,
1], lw=
0.1,
c=digits.target, cmap=plt.cm.get_cmap(
'cubehelix',
6))
plt.colorbar(ticks=range(
6), label=
'digit value')
plt.clim(
-0.5,
5.5)
%matplotlib inline
import matplotlib.pyplot
as plt
plt.style.use(
'seaborn-white')
import numpy
as np
ax1 = plt.axes()
# 标准图表
ax2 = plt.axes([
0.65,
0.65,
0.2,
0.2])
#子图表
fig = plt.figure()
# 获得figure对象
ax1 = fig.add_axes([
0.1,
0.5,
0.8,
0.4],
xticklabels=[], ylim=(
-1.2,
1.2))
# 左边10% 底部50% 宽80% 高40%
ax2 = fig.add_axes([
0.1,
0.1,
0.8,
0.4],
ylim=(
-1.2,
1.2))
# 左边10% 底部10% 宽80% 高40%
x = np.linspace(
0,
10)
ax1.plot(np.sin(x))
ax2.plot(np.cos(x));
for i
in range(
1,
7):
plt.subplot(
2,
3, i)
plt.text(
0.5,
0.5, str((
2,
3, i)),
fontsize=
18, ha=
'center')
fig = plt.figure()
fig.subplots_adjust(hspace=
0.4, wspace=
0.4)
for i
in range(
1,
7):
ax = fig.add_subplot(
2,
3, i)
ax.text(
0.5,
0.5, str((
2,
3, i)),
fontsize=
18, ha=
'center')
fig, ax = plt.subplots(
2,
3, sharex=
'col', sharey=
'row')
# axes是一个2×3的数组,可以通过[row, col]进行索引访问
for i
in range(
2):
for j
in range(
3):
ax[i, j].text(
0.5,
0.5, str((i, j)),
fontsize=
18, ha=
'center')
fig
grid = plt.GridSpec(
2,
3, wspace=
0.4, hspace=
0.3)
plt.subplot(grid[
0,
0])
plt.subplot(grid[
0,
1:])
plt.subplot(grid[
1, :
2])
plt.subplot(grid[
1,
2]);
# 构建二维正态分布数据
mean = [
0,
0]
cov = [[
1,
1], [
1,
2]]
x, y = np.random.multivariate_normal(mean, cov,
3000).T
# 使用GridSpec创建网格并加入子图表
fig = plt.figure(figsize=(
6,
6))
grid = plt.GridSpec(
4,
4, hspace=
0.2, wspace=
0.2)
main_ax = fig.add_subplot(grid[:
-1,
1:])
y_hist = fig.add_subplot(grid[:
-1,
0], xticklabels=[], sharey=main_ax)
x_hist = fig.add_subplot(grid[
-1,
1:], yticklabels=[], sharex=main_ax)
# 在主图表中绘制散点图
main_ax.plot(x, y,
'ok', markersize=
3, alpha=
0.2)
# 分别在x轴和y轴方向绘制直方图
x_hist.hist(x,
40, histtype=
'stepfilled',
orientation=
'vertical', color=
'gray')
x_hist.invert_yaxis()
# x轴方向(右下)直方图倒转y轴方向
y_hist.hist(y,
40, histtype=
'stepfilled',
orientation=
'horizontal', color=
'gray')
y_hist.invert_xaxis()
# y轴方向(左上)直方图倒转x轴方向
%matplotlib inline
import matplotlib.pyplot
as plt
import matplotlib
as mpl
plt.style.use(
'seaborn-whitegrid')
import numpy
as np
import pandas
as pd
births = pd.read_csv(
r'D:\python\Github学习材料\Python数据科学手册\data\births.csv')
quartiles = np.percentile(births[
'births'], [
25,
50,
75])
mu, sig = quartiles[
1],
0.74 * (quartiles[
2] - quartiles[
0])
births = births.query(
'(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)')
births[
'day'] = births[
'day'].astype(int)
births.index = pd.to_datetime(
10000 * births.year +
100 * births.month +
births.day, format=
'%Y%m%d')
births_by_date = births.pivot_table(
'births',
[births.index.month, births.index.day])
births_by_date.index = [pd.datetime(
2012, month, day)
for (month, day)
in births_by_date.index]
C:\Users\gdc\Anaconda3\lib\site-packages\ipykernel_launcher.py:15: FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime module instead.
from ipykernel import kernelapp as app
fig, ax = plt.subplots(figsize=(
12,
4))
births_by_date.plot(ax=ax);
fig, ax = plt.subplots(figsize=(
12,
4))
births_by_date.plot(ax=ax)
# 在折线的特殊位置标注文字
style = dict(size=
10, color=
'gray')
ax.text(
'2012-1-1',
3950,
"New Year's Day", **style)
ax.text(
'2012-7-4',
4250,
"Independence Day", ha=
'center', **style)
ax.text(
'2012-9-4',
4850,
"Labor Day", ha=
'center', **style)
ax.text(
'2012-10-31',
4600,
"Halloween", ha=
'right', **style)
ax.text(
'2012-11-25',
4450,
"Thanksgiving", ha=
'center', **style)
ax.text(
'2012-12-25',
3850,
"Christmas ", ha=
'right', **style)
# 设置标题和y轴标签
ax.set(title=
'USA births by day of year (1969-1988)',
ylabel=
'average daily births')
# 设置x轴标签月份居中
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=
15))
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter(
'%h'));
fig, ax = plt.subplots(facecolor=
'lightgray')
ax.axis([
0,
10,
0,
10])
# transform=ax.transData是默认的,这里写出来是为了明确对比
ax.text(
1,
5,
". Data: (1, 5)", transform=ax.transData)
ax.text(
0.5,
0.1,
". Axes: (0.5, 0.1)", transform=ax.transAxes)
ax.text(
0.2,
0.2,
". Figure: (0.2, 0.2)", transform=fig.transFigure);
ax.set_xlim(
0,
2)
ax.set_ylim(
-6,
6)
fig
%matplotlib inline
fig, ax = plt.subplots()
x = np.linspace(
0,
20,
1000)
ax.plot(x, np.cos(x))
ax.axis(
'equal')
ax.annotate(
'local maximum', xy=(
6.28,
1), xytext=(
10,
4),
arrowprops=dict(facecolor=
'black', shrink=
0.05))
ax.annotate(
'local minimum', xy=(
5 * np.pi,
-1), xytext=(
2,
-6),
arrowprops=dict(arrowstyle=
"->",
connectionstyle=
"angle3,angleA=0,angleB=-90"));
fig, ax = plt.subplots(figsize=(
12,
4))
births_by_date.plot(ax=ax)
# 为图表添加标注
ax.annotate(
"New Year's Day", xy=(
'2012-1-1',
4100), xycoords=
'data',
xytext=(
50,
-30), textcoords=
'offset points',
arrowprops=dict(arrowstyle=
"->",
connectionstyle=
"arc3,rad=-0.2"))
ax.annotate(
"Independence Day", xy=(
'2012-7-4',
4250), xycoords=
'data',
bbox=dict(boxstyle=
"round", fc=
"none", ec=
"gray"),
xytext=(
10,
-40), textcoords=
'offset points', ha=
'center',
arrowprops=dict(arrowstyle=
"->"))
ax.annotate(
'Labor Day', xy=(
'2012-9-4',
4850), xycoords=
'data', ha=
'center',
xytext=(
0,
-20), textcoords=
'offset points')
ax.annotate(
'', xy=(
'2012-9-1',
4850), xytext=(
'2012-9-7',
4850),
xycoords=
'data', textcoords=
'data',
arrowprops={
'arrowstyle':
'|-|,widthA=0.2,widthB=0.2', })
ax.annotate(
'Halloween', xy=(
'2012-10-31',
4600), xycoords=
'data',
xytext=(
-80,
-40), textcoords=
'offset points',
arrowprops=dict(arrowstyle=
"fancy",
fc=
"0.6", ec=
"none",
connectionstyle=
"angle3,angleA=0,angleB=-90"))
ax.annotate(
'Thanksgiving', xy=(
'2012-11-25',
4500), xycoords=
'data',
xytext=(
-120,
-60), textcoords=
'offset points',
bbox=dict(boxstyle=
"round4,pad=.5", fc=
"0.9"),
arrowprops=dict(arrowstyle=
"->",
connectionstyle=
"angle,angleA=0,angleB=80,rad=20"))
ax.annotate(
'Christmas', xy=(
'2012-12-25',
3850), xycoords=
'data',
xytext=(
-30,
0), textcoords=
'offset points',
size=
13, ha=
'right', va=
"center",
bbox=dict(boxstyle=
"round", alpha=
0.1),
arrowprops=dict(arrowstyle=
"wedge,tail_width=0.5", alpha=
0.1));
# 设置图表标题和坐标轴标记
ax.set(title=
'USA births by day of year (1969-1988)',
ylabel=
'average daily births')
# 设置月份坐标居中显示
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=
15))
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter(
'%h'));
ax.set_ylim(
3600,
5400);
import matplotlib.pyplot
as plt
plt.style.use(
'classic')
%matplotlib inline
import numpy
as np
ax = plt.axes(xscale=
'log', yscale=
'log', xlim=[
10e-5,
10e5], ylim=[
10e-5,
10e5])
ax.grid();
print(ax.xaxis.get_major_locator())
print(ax.xaxis.get_minor_locator())
<matplotlib.ticker.LogLocator object at 0x000001E8074AF108>
<matplotlib.ticker.LogLocator object at 0x000001E8074AD908>
print(ax.xaxis.get_major_formatter())
print(ax.xaxis.get_minor_formatter())
<matplotlib.ticker.LogFormatterSciNotation object at 0x000001E8074AEB88>
<matplotlib.ticker.LogFormatterSciNotation object at 0x000001E8074ADB48>
ax = plt.axes()
ax.plot(np.random.rand(
50))
ax.yaxis.set_major_locator(plt.NullLocator())
ax.xaxis.set_major_formatter(plt.NullFormatter())
fig, ax = plt.subplots(
5,
5, figsize=(
5,
5))
fig.subplots_adjust(hspace=
0, wspace=
0)
# 从scikit-learn载入头像数据集
from sklearn.datasets
import fetch_olivetti_faces
faces = fetch_olivetti_faces().images
for i
in range(
5):
for j
in range(
5):
ax[i, j].xaxis.set_major_locator(plt.NullLocator())
ax[i, j].yaxis.set_major_locator(plt.NullLocator())
ax[i, j].imshow(faces[
10 * i + j], cmap=
"bone")
downloading Olivetti faces from
https://ndownloader.figshare.com/files/5976027
to C:\Users\gdc\scikit_learn_data
fig, ax = plt.subplots(
4,
4, sharex=
True, sharey=
True)
# 对x和y轴设置刻度最大数量
for axi
in ax.flat:
axi.xaxis.set_major_locator(plt.MaxNLocator(
3))
axi.yaxis.set_major_locator(plt.MaxNLocator(
3))
fig
# 绘制正弦和余弦图表
fig, ax = plt.subplots()
x = np.linspace(
0,
3 * np.pi,
1000)
ax.plot(x, np.sin(x), lw=
3, label=
'Sine')
ax.plot(x, np.cos(x), lw=
3, label=
'Cosine')
# 设置网格、图例和轴极限
ax.grid(
True)
ax.legend(frameon=
False)
ax.axis(
'equal')
ax.set_xlim(
0,
3 * np.pi);
ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi /
2))
ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi /
4))
fig
plt.FuncFormatter
,这个对象能够接受一个用户自定义的函数来提供对于刻度标签的精细控制:
def format_func(value, tick_number):
# N是pi/2的倍数
N = int(np.round(
2 * value / np.pi))
if N ==
0:
return
"0"
# 0点
elif N ==
1:
return
r"$\frac{\pi}{2}$"
# pi/2
elif N ==
2:
return
r"$\pi$"
# pi
elif N %
2 >
0:
return
r"$\frac{{%d}\pi}{2}$" %N
# n*pi/2 n是奇数
else:
return
r"${0}\pi$".format(N //
2)
# n*pi n是整数
ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
fig
NullLocator
|
|
FixedLocator
|
|
IndexLocator
|
|
LinearLocator
|
|
LogLocator
|
|
MultipleLocator
|
|
MaxNLocator
|
|
AutoLocator
|
|
AutoMinorLocator
|
|
NullFormatter
|
|
IndexFormatter
|
|
FixedFormatter
|
|
FuncFormatter
|
|
FormatStrFormatter
|
|
ScalarFormatter
|
|
LogFormatter
|
|
from mpl_toolkits
import mplot3d
%matplotlib inline
import numpy
as np
import matplotlib.pyplot
as plt
fig = plt.figure()
ax = plt.axes(projection=
'3d')
ax = plt.axes(projection=
'3d')
# 三维螺旋线的数据
zline = np.linspace(
0,
15,
1000)
xline = np.sin(zline)
yline = np.cos(zline)
ax.plot3D(xline, yline, zline,
'gray')
# 三维散点的数据
zdata =
15 * np.random.random(
100)
xdata = np.sin(zdata) +
0.1 * np.random.randn(
100)
ydata = np.cos(zdata) +
0.1 * np.random.randn(
100)
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap=
'Greens');
def f(x, y):
return np.sin(np.sqrt(x **
2 + y **
2))
x = np.linspace(
-6,
6,
30)
y = np.linspace(
-6,
6,
30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
fig = plt.figure()
ax = plt.axes(projection=
'3d')
ax.contour3D(X, Y, Z,
50, cmap=
'binary')
ax.set_xlabel(
'x')
ax.set_ylabel(
'y')
ax.set_zlabel(
'z');
ax.view_init(
60,
35)
fig
fig = plt.figure()
ax = plt.axes(projection=
'3d')
ax.plot_wireframe(X, Y, Z, color=
'black')
ax.set_title(
'wireframe');
ax = plt.axes(projection=
'3d')
ax.plot_surface(X, Y, Z, rstride=
1, cstride=
1,
cmap=
'viridis', edgecolor=
'none')
ax.set_title(
'surface');
r = np.linspace(
0,
6,
20)
theta = np.linspace(
-0.9 * np.pi,
0.8 * np.pi,
40)
r, theta = np.meshgrid(r, theta)
X = r * np.sin(theta)
Y = r * np.cos(theta)
Z = f(X, Y)
ax = plt.axes(projection=
'3d')
ax.plot_surface(X, Y, Z, rstride=
1, cstride=
1,
cmap=
'viridis', edgecolor=
'none');
theta =
2 * np.pi * np.random.random(
1000)
r =
6 * np.random.random(
1000)
x = np.ravel(r * np.sin(theta))
y = np.ravel(r * np.cos(theta))
z = f(x, y)
ax = plt.axes(projection=
'3d')
ax.scatter(x, y, z, c=z, cmap=
'viridis', linewidth=
0.5);
ax = plt.axes(projection=
'3d')
ax.plot_trisurf(x, y, z,
cmap=
'viridis', edgecolor=
'none');
theta = np.linspace(
0,
2 * np.pi,
30)
w = np.linspace(
-0.25,
0.25,
8)
w, theta = np.meshgrid(w, theta)
phi =
0.5 * theta
# r是坐标点距离环形中心的距离值
r =
1 + w * np.cos(phi)
# 利用简单的三角函数知识算得x,y,z坐标值
x = np.ravel(r * np.cos(theta))
y = np.ravel(r * np.sin(theta))
z = np.ravel(w * np.sin(phi))
# 在底层参数的基础上进行三角剖分
from matplotlib.tri
import Triangulation
tri = Triangulation(np.ravel(w), np.ravel(theta))
ax = plt.axes(projection=
'3d')
ax.plot_trisurf(x, y, z, triangles=tri.triangles,
cmap=
'viridis', linewidths=
0.2);
ax.set_xlim(
-1,
1); ax.set_ylim(
-1,
1); ax.set_zlim(
-1,
1);
首届珠港澳人工智能算法大赛即将开赛
赛题一:短袖短裤识别
赛题二:小摊贩占道识别
即将开赛 等你加入