【导读】UAI大会全称为Conference on Uncertainty in Artificial Intelligence,立足于不确定性人工智能领域,主要侧重于不确定性人工智能的知识表达、获取以及推理等问题。本文整理了2019年大会的接受论文列表,方便读者查阅。
| ID: 1 | Personalized Peer Truth Serum for Eliciting Multi-Attribute Personal Data |
| Naman Goel, Boi Faltings | |
| ID: 6 | Conditional Expectation Propagation |
| Zheng Wang, Shandian Zhe | |
| ID: 7 | A Sparse Representation-Based Approach to Linear Regression with Partially Shuffled Labels |
| Martin Slawski, Mostafa Rahmani, Ping Li | |
| ID: 13 | On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don’t Worry About its Nonsmooth Loss Function |
| Xingguo Li, Haoming Jiang, Jarvis Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao | |
| ID: 14 | Correlated Learning for Aggregation Systems |
| Tanvi Verma, Pradeep Varakantham | |
| ID: 15 | Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias |
| Patrick Forré, Joris M. Mooij | |
| ID: 16 | Variational Regret Bounds for Reinforcement Learning |
| Ronald Ortner, Pratik Gajane, Peter Auer | |
| ID: 17 | Recommendation from Raw Data with Adaptive Compound Poisson Factorization |
| Olivier Gouvert, Thomas Oberlin, Cédric Févotte | |
| ID: 19 | One-Shot Inference in Markov Random Fields |
| Hao Xiong, Yuanzhen Guo, Yibo Yang, Nicholas Ruozzi | |
| ID: 21 | Truly Proximal Policy Optimization |
| Yuhui Wang, Hao He, Xiaoyang Tan | |
| ID: 24 | Learning Factored Markov Decision Processes with Unawareness |
| Craig Innes, Alex Lascarides | |
| ID: 25 | Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions |
| Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, Andy Neely | |
| ID: 28 | Countdown Regression: Sharp and Calibrated Survival Predictions |
| Anand Avati, Tony Duan, Sharon Zhou, Ken Jung, Nigam H. Shah, Andrew Ng | |
| ID: 32 | Reducing Exploration of Dying Arms in Mortal Bandits |
| Stefano Tracà, Weiyu Yan, Cynthia Rudin | |
| ID: 33 | Comparing EM with GD in Mixture Models of Two Components |
| Guojun Zhang, Pascal Poupart, George Trimponias | |
| ID: 35 | Efficient Search-Based Weighted Model Integration |
| Zhe Zeng, Guy Van den Broeck | |
| ID: 45 | Causal Discovery with General Non-Linear Relationships using Non-Linear ICA |
| Ricardo Pio Monti, Kun Zhang, Aapo Hyvarinen | |
| ID: 47 | BubbleRank: Safe Online Learning to Re-Rank via Implicit Click Feedback |
| Chang Li, Branislav Kveton, Tor Lattimore, Ilya Markov, Maarten de Rijke, Csaba Szepesvari, Masrour Zoghi | |
| ID: 49 | Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory |
| Philipp Geiger, Michel Besserve, Justus Winkelmann, Claudius Proissl, Bernhard Schoelkopf | |
| ID: 53 | The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA |
| Luigi Gresele, Paul Rubenstein, Arash Mehrjou, Francesco Locatello, Bernhard Schoelkopf | |
| ID: 55 | Random Clique Covers for Graphs with Local Density and Global Sparsity |
| Sinead A. Williamson, Mauricio Tec | |
| ID: 64 | Randomized Iterative Algorithms for Fisher Discriminant Analysis |
| Agniva Chowdhury, Jiasen Yang, Petros Drineas | |
| ID: 78 | Dynamic Trip-Vehicle Dispatch with Scheduled and On-Demand Requests |
| Taoan Huang, Bohui Fang, Xiaohui Bei, Fei Fang | |
| ID: 83 | Fall of Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipulation |
| Cong Xie, Oluwasanmi Koyejo, Indranil Gupta | |
| ID: 86 | Adaptive Hashing for Model Counting |
| Jonathan Kuck, Tri Dao, Shenjia Zhao, Burak Bartan, Ashish Sabharwal, Stefano Ermon | |
| ID: 91 | Towards a Better Understanding and Regularization of GAN Training Dynamics |
| Weili Nie, Ankit Patel | |
| ID: 101 | Domain Generalization via Multidomain Discriminant Analysis |
| Shoubo Hu, Kun Zhang, Zhitang Chen, Laiwan Chan | |
| ID: 112 | Efficient Planning Under Uncertainty with Incremental Refinement |
| Juan Carlos Saborío, Joachim Hertzberg | |
| ID: 118 | Cubic Regularization with Momentum for Nonconvex Optimization |
| Zhe Wang, Yi Zhou, Yingbin Liang, Guanghui Lan | |
| ID: 122 | Stability of Linear Structural Equation Models of Causal Inference |
| Karthik Abinav Sankararaman, Anand Louis, Navin Goyal | |
| ID: 124 | Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning |
| Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Xiaoting Shao, Kristian Kersting, Zoubin Ghahramani | |
| ID: 127 | Towards Robust Relational Causal Discovery |
| Sanghack Lee, Vasant Honavar | |
| ID: 128 | The Role of Memory in Stochastic Optimization |
| Antonio Orvieto, Jonas Kohler, Aurelien Lucchi | |
| ID: 129 | Random Search and Reproducibility for Neural Architecture Search |
| Liam Li, Ameet Talwalkar | |
| ID: 138 | Joint Nonparametric Precision Matrix Estimation with Confounding |
| Sinong Geng, Mladen Kolar, Oluwasanmi Koyejo | |
| ID: 144 | General Identifiability with Arbitrary Surrogate Experiments |
| Sanghack Lee, Juan D. Correa, Elias Bareinboim | |
| ID: 148 | Differentiable Probabilistic Models of Scientific Imaging with the Fourier Slice Theorem |
| Karen Ullrich, Rianne van den Berg, Marcus A. Brubaker, David Fleet, Max Welling | |
| ID: 152 | Approximate Inference in Structured Instances with Noisy Categorical Observations |
| Alireza Heidari, Ihab F. Ilyas, Theodoros Rekatsinas | |
| ID: 156 | Randomized Value Functions via Multiplicative Normalizing Flows |
| Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, Pascal Vincent | |
| ID: 158 | A Fast Proximal Point Method for Computing Exact Wasserstein Distance |
| Yujia Xie, Xiangfeng Wang, Ruijia Wang, Hongyuan Zha | |
| ID: 159 | Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks |
| Qi She, Anqi Wu | |
| ID: 161 | Fisher-Bures Adversary Graph Convolutional Networks |
| Ke Sun, Piotr Koniusz, Zhen Wang | |
| ID: 162 | Epsilon-BMC: A Bayesian Ensemble Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning |
| Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee | |
| ID: 163 | Periodic Kernel Approximation by Index Set Fourier Series Features |
| Anthony Tompkins, Fabio Ramos | |
| ID: 164 | Efficient Neural Network Verification with Exactness Characterization |
| Krishnamurthy (Dj) Dvijotham, Robert Stanforth, Sven Gowal, Sven Gowal, Chongli Qin, Soham De, Pushmeet Kohli | |
| ID: 172 | Augmenting and Tuning Knowledge Graph Embeddings |
| Robert Bamler, Farnood Salehi, Stephan Mandt | |
| ID: 174 | A Tighter Analysis of Randomised Policy Iteration |
| Meet Taraviya, Shivaram Kalyanakrishnan | |
| ID: 176 | Perturbed-History Exploration in Stochastic Linear Bandits |
| Branislav Kveton, Csaba Szepesvari, Mohammad Ghavamzadeh, Craig Boutilier | |
| ID: 191 | An Improved Convergence Analysis of Stochastic Variance-Reduced Policy Gradient |
| Pan Xu, Felicia Gao, Quanquan Gu | |
| ID: 192 | Deep Mixture of Experts via Shallow Embedding |
| Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, Joseph E. Gonzalez | |
| ID: 193 | Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation |
| Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir | |
| ID: 204 | Sliced Score Matching: A Scalable Approach to Density and Score Estimation |
| Yang Song, Sahaj Garg, Jiaxin Shi, Stefano Ermon | |
| ID: 205 | Beyond Structural Causal Models: Causal Constraints Models |
| Tineke Blom, Stephan Bongers, Joris M. Mooij | |
| ID: 206 | Be Greedy: How Chromatic Number meets Regret Minimization in Graph Bandits |
| Aadirupa Saha, Shreyas Sheshadri, Chiranjib Bhattacharyya | |
| ID: 210 | Approximate Causal Abstractions |
| Sander Beckers, Frederick Eberhardt, Joseph Y. Halpern | |
| ID: 213 | The Sensitivity of Counterfactual Fairness to Unmeasured Confounding |
| Niki Kilbertus, Philip J. Ball, Matt J. Kusner, Adrian Weller, Ricardo Silva | |
| ID: 221 | Belief Propagation: Accurate Marginals or Accurate Partition Function -- Where is the Difference? |
| Christian Knoll, Franz Pernkopf | |
| ID: 222 | Finding Minimal d-separators in Linear Time and Applications |
| Benito van der Zander, Maciej Liśkiewicz | |
| ID: 228 | A Bayesian Approach to Robust Reinforcement Learning |
| Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, Shie Mannor | |
| ID: 232 | Adaptivity and Optimality: A Universal Algorithm for Online Convex Optimization |
| Guanghui Wang, Shiyin Lu, Lijun Zhang | |
| ID: 234 | Evacuate or Not? A POMDP Model of the Decision Making of Individuals in Hurricane Evacuation Zones |
| Adithya Raam Sankar, Prashant Doshi, Adam Goodie | |
| ID: 235 | Probabilistic Programming for Birth-Death Models of Evolution Using an Alive Particle Filter with Delayed Sampling |
| Jan Kudlicka, Lawrence M. Murray, Fredrik Ronquist, Thomas B. Schön | |
| ID: 239 | Variational Sparse Coding |
| Francesco Tonolini, Bjørn Sand Jensen, Roderick Murray-Smith | |
| ID: 244 | Learning with Non-Convex Truncated Losses by SGD |
| Yi Xu, Shenghuo Zhu, Sen Yang, Chi Zhang, Rong Jin, Tianbao Yang | |
| ID: 245 | Active Multi-Information Source Bayesian Quadrature |
| Alexandra Gessner, Javier Gonzalez, Maren Mahsereci | |
| ID: 248 | Cascading Linear Submodular Bandits: Accounting for Position Bias and Diversity in Online Learning to Rank |
| Gaurush Hiranandani, Harvineet Singh, Prakhar Gupta, Iftikhar Ahamath Burhanuddin, Zheng Wen, Branislav Kveton | |
| ID: 253 | Sinkhorn AutoEncoders |
| Giorgio Patrini, Rianne van den Berg, Patrick Forré, Marcello Carioni, Samarth Bhargav, Max Welling, Tim Genewein, Frank Nielsen | |
| ID: 262 | How to Exploit Structure while Solving Weighted Model Integration Problems |
| Samuel Kolb, Pedro Zuidberg Dos Martires, Luc De Raedt | |
| ID: 264 | Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation |
| Théo Galy-Fajou, Florian Wenzel, Christian Donner, Manfred Opper | |
| ID: 267 | A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations |
| Biswajit Paria, Kirthevasan Kandasamy, Barnabás Póczos | |
| ID: 275 | Efficient Multitask Feature and Relationship Learning |
| Han Zhao, Otilia Stretcu, Alexander J. Smola, Geoffrey J. Gordon | |
| ID: 284 | Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning |
| Jian Wu, Saul Toscano-Palmerin, Peter I. Frazier, Andrew Gordon Wilson | |
| ID: 290 | Adaptively Truncating Backpropagation Through Time to Control Gradient Bias |
| Christopher Aicher, Nicholas J. Foti, Emily B. Fox | |
| ID: 296 | Sampling-free Uncertainty Estimation in Gated Recurrent Units with Applications to Normative Modeling in Neuroimaging |
| Seong Jae Hwang, Ronak R. Mehta, Hyunwoo J. Kim, Sterling C. Johnson, Vikas Singh | |
| ID: 299 | Online Factorization and Partition of Complex Networks by Random Walk |
| Lin F. Yang, Zheng Yu, Vladimir Braverman, Tuo Zhao, Mengdi Wang | |
| ID: 302 | On Densification for Minwise Hashing |
| Tung Mai, Anup Rao, Matt Kapilevich, Ryan Rossi, Yasin Abbsi Yadkori, Ritwik Sinha | |
| ID: 310 | N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification |
| Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, Joonseok Lee | |
| ID: 312 | Problem-dependent Regret Bounds for Online Learning with Feedback Graphs |
| Bingshan Hu, Nishant A. Mehta, Jianping Pan | |
| ID: 315 | Wasserstein Fair Classification |
| Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, Silvia Chiappa | |
| ID: 317 | Variational Training for Large-Scale Noisy-OR Bayesian Networks |
| Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik Sudderth | |
| ID: 319 | Guaranteed Scalable Learning of Latent Tree Models |
| Furong Huang, Niranjan UN, Ioakeim Perros, Robert Chen, Jimeng Sun, Anima Anandkumar | |
| ID: 324 | On First-Order Bounds, Variance and Gap-Dependent Bounds for Adversarial Bandits |
| Roman Pogodin, Tor Lattimore | |
| ID: 332 | Noise Contrastive Priors for Functional Uncertainty |
| Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex Irpan, James Davidson | |
| ID: 334 | Fake It Till You Make It: Learning-Compatible Performance ort |
| Jonathan Bragg, Emma Brunskill | |
| ID: 335 | Literal or Pedagogic Human? Analyzing Human Model Misspecification in Objective Learning |
| Smitha Milli, Anca D. Dragan | |
| ID: 339 | Convergence Analysis of Gradient-Based Learning in Continuous Games |
| Benjamin Chasnov, Lillian J. Ratliff, Eric Mazumdar, Sam Burden | |
| ID: 340 | End-to-end Training of Deep Probabilistic CCA on Paired Biomedical Observations |
| Gregory Gundersen, Bianca Dumitrascu, Jordan T. Ash, Barbara E. Engelhardt | |
| ID: 341 | Approximate Relative Value Learning for Average-reward Continuous State MDPs |
| Hiteshi Sharma, Mehdi Jafarnia-Jahromi, Rahul Jain | |
| ID: 345 | Exact Sampling of Directed Acyclic Graphs from Modular Distributions |
| Topi Talvitie, Aleksis Vuoksenmaa, Mikko Koivisto | |
| ID: 352 | Intervening on Network Ties |
| Eli Sherman, Ilya Shpitser | |
| ID: 356 | Generating and Sampling Orbits for Lifted Probabilistic Inference |
| Steven Holtzen, Todd Millstein, Guy Van den Broeck | |
| ID: 368 | Real-Time Robotic Search using Structural Spatial Point Processes |
| Olov Andersson, Per Sidén, Johan Dahlin, Patrick Doherty, Mattias Villani | |
| ID: 370 | Social Reinforcement Learning to Combat Fake News Spread |
| Mahak Goindani, Jennifer Neville | |
| ID: 371 | P3O: Policy-on Policy-off Policy Optimization |
| Rasool Fakoor, Pratik Chaudhari, Alexander J. Smola | |
| ID: 372 | Causal Inference Under Interference And Network Uncertainty |
| Rohit Bhattacharya, Daniel Malinsky, Ilya Shpitser | |
| ID: 373 | Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow |
| Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, Frank Wood | |
| ID: 380 | Learnability for the Information Bottleneck |
| Tailin Wu, Ian Fischer, Isaac Chuang, Max Tegmark | |
| ID: 383 | Learning Belief Representations for Imitation Learning in POMDPs |
| Tanmay Gangwani, Joel Lehman, Qiang Liu, Jian Peng | |
| ID: 393 | Object Conditioning for Causal Inference |
| David Jensen, Javier Burroni, Matthew Rattigan | |
| ID: 403 | CCMI : Classifier based Conditional Mutual Information Estimation |
| Sudipto Mukherjee, Himanshu Asnani, Sreeram Kannan | |
| ID: 406 | Empirical Mechanism Design: Designing Mechanisms from Data |
| Enrique Areyan Viqueira, Cyrus Cousins, Yasser Mohammad, Amy Greenwald | |
| ID: 407 | On the Relationship Between Satisfiability and Markov Decision Processes |
| Ricardo Salmon, Pascal Poupart | |
| ID: 410 | Interpretable Almost Matching Exactly With Instrumental Variables |
| M.Usaid Awan, Yameng Liu, Marco Morucci, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky | |
| ID: 411 | Low Frequency Adversarial Perturbation |
| Chuan Guo, Jared S. Frank, Kilian Q. Weinberger | |
| ID: 427 | Markov Logic Networks for Knowledge Base Completion: A Theoretical Analysis Under the MCAR Assumption |
| Ondrej Kuzelka, Jesse Davis | |
| ID: 428 | Identification In Missing Data Models Represented By Directed Acyclic Graphs |
| Rohit Bhattacharya, Razieh Nabi, Ilya Shpitser, James M. Robins | |
| ID: 432 | A Weighted Mini-Bucket Bound for Solving Influence Diagram |
| Junkyu Lee, Radu Marinescu, Alexander Iher, Rina Dechter | |
| ID: 435 | Subspace Inference for Bayesian Deep Learning |
| Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson | |
| ID: 440 | Off-Policy Policy Gradient with Stationary Distribution Correction |
| Yao Liu, Adith Swaminathan, Alekh Agarwal, Emma Brunskill | |
| ID: 441 | Co-training for Policy Learning |
| Jialin Song, Ravi Lanka, Yisong Yue, Masahiro Ono | |
| ID: 443 | Variational Inference of Penalized Regression with Submodular Functions |
| Koh Takeuchi, Yuichi Yoshida, Yoshinobu Kawahara | |
| ID: 450 | Probability Distillation: A Caveat and Alternatives |
| Chin-Wei Huang, Faruk Ahmed, Kundan Kumar, Alexandre Lacoste, Aaron Courville | |
| ID: 468 | Bayesian Optimization with Binary Auxiliary Information |
| Yehong Zhang, Zhongxiang Dai, Bryan Kian Hsiang Low | |
| ID: 481 | On Open-Universe Causal Reasoning |
| Duligur Ibeling, Thomas Icard | |
| ID: 496 | Embarrassingly Parallel MCMC using Deep Invertible Transformations |
| Diego Mesquita, Paul Blomstedt, Samuel Kaski | |
| ID: 508 | Fast Proximal Gradient Descent for A Class of Non-convex and Non-smooth Sparse Learning Problems |
| Yingzhen Yang, Jiahui Yu | |
| ID: 511 | Block Neural Autoregressive Flow |
| Nicola De Cao, Wilker Aziz, Ivan Titov | |
| ID: 512 | Exclusivity Graph Approach to Instrumental Inequalities |
| Davide Poderini, Rafael Chaves, Iris Agresti, Gonzalo Carvacho, Fabio Sciarrino | |
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!550+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程