1.【免费书:可解释的机器学习】《Interpretable Machine Learning - A Guide for Making Black Box Models Explainable》by Christoph Molnar
https://christophm.github.io/interpretable-ml-book/
By 爱可可-爱生活
2.这是深度增强学习的一个综述《DEEP REINFORCEMENT LEARNING: AN OVERVIEW》,不算那么长,70页吧,但把比较新的,比如Deep Q-network介绍得比较细,很值得一看
https://www.aminer.cn/archive/deep-reinforcement-learning-an-overview/58d82fced649053542fd6c0e
By 唐杰THU
3.【2017深度学习优化研究亮点】《Optimization for Deep Learning Highlights in 2017》by Sebastian Ruder
http://ruder.io/deep-learning-optimization-2017/index.html
By 爱可可-爱生活
http://mp.weixin.qq.com/s/_PlISSOaowgvVW5msa7GlQ
By 新智元
https://mp.weixin.qq.com/s/u1UnAuGllcWn8Ik5wDPY6w
By 机器之心
(PS:点击阅读原文可直接打开链接,查看更多精彩内容)
- END -
非常欢迎加入我们的微信群一起讨论分享!
新浪微博:ChatbotsChina
微信号:Chatbots01
关注我们,一起学习机器人