| 作者:朱勇椿 
 
    
    
   WWW 2022组委会近日放出了正式接收论文清单。大会共收到了1822篇论文,接收323篇,录用率为17.7%。完整清单见:
 
   www2022.thewebconf.org/accepted-papers/
 
   
 
    
    下图为WWW会议历年论文投稿量与接收率统计图,可以看出投稿量和接收率大体上呈现出每年都有新增的趋势。今年的接收率相比于去年有大幅度下降,但投稿量有所提高。 
    
    
    
    近几年, 
    推荐系统 
    和 
    计算广告 
    一直是WWW上热门主题,广泛受到了学术界和业界的关注。本文整理了WWW2022上推荐系统和计算广告方向的论文(topic的划分主要根据本人的阅读习惯,如有不合适的地方,欢迎指出)。 
    
    
    本文主要整理了推荐系统和计算广告方面论文,共计74篇 
    。其中时序推荐13篇、基于图的推荐9篇、可解释推荐7篇、推荐系统中的bias 5篇、因果相关4篇、公平性和隐私保护4、强化学习3篇、冷启动3篇、基于自编码机3篇、跨领域2篇、多任务2篇、对比学习3篇、计算广告6篇、延迟反馈2篇、新闻推荐2篇、其他12篇。可以看到 
    今年时序推荐和可解释推荐大热门,而技术方面,图网络和因果推理依然火爆。 
     
    
   
 
   时序推荐
 
   Disentangling Long and Short-Term Interests for Recommendation
Yu Zheng, Chen Gao, Jianxin Chang, Yanan Niu, Yang Song, Depeng Jin and Yong Li
Efficient Online Learning to Rank for Sequential Music Recommendation
Pedro Chaves, Bruno Pereira and Rodrygo Santos
Filter-enhanced MLP is All You Need for Sequential Recommendation
Kun Zhou, Hui Yu, Wayne Xin Zhao and Ji-Rong Wen
Generative Session-based Recommendation
Wang Zhidan, Ye Wenwen, Chen Xu, Zhang Wenqiang, Wang Zhenlei, Zou Lixin and Liu Weidong
GSL4Rec: Session-based Recommendations with Collective Graph Structure Learning and Next Interaction Prediction
Chunyu Wei, Bing Bai, Kun Bai and Fei Wang
Intent Contrastive Learning for Sequential Recommendation
Yongjun Chen, Zhiwei Liu, Jia Li, Julian McAuley and Caiming Xiong
Learn from Past, Evolve for Future: Search-based Time-aware Recommendation with Sequential Behavior Data
Jiarui Jin, Xianyu Chen, Weinan Zhang, Junjie Huang, Ziming Feng and Yong Yu
Sequential Recommendation via Stochastic Self-Attention
Ziwei Fan, Zhiwei Liu, Yu Wang, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng and Philip S. Yu
Sequential Recommendation with Decomposed Item Feature Routing
Kun Lin, Zhenlei Wang, Zhipeng Wang, Bo Chen, Shiqi Shen and Xu Chen
Towards Automatic Discovering of Deep Hybrid Network Architecture for Sequential Recommendation
Mingyue Cheng, Zhiding Liu, Qi Liu, Shenyang Ge and Enhong Chen
Unbiased Sequential Recommendation with Latent Confounders
Zhenlei Wang, Shiqi Shen, Zhipeng Wang, Bo Chen, Xu Chen and Ji-Rong Wen
Re4: Learning to Re-contrast, Re-attend, Re-construct for Multi-interest Recommendation
Shengyu Zhang, Lingxiao Yang, Dong Yao, Yujie Lu, Fuli Feng, Zhou Zhao, Tat-Seng Chua and Fei Wu
Deep Interest Highlight Network for Click-Through Rate Prediction in Trigger-Induced Recommendation
Qijie Shen, Hong Wen, Wanjie Tao, Jing Zhang, Fuyu Lv, Zulong Chen and Zhao Li
 
   
 
    
   
     FIRE: Fast Incremental Recommendation with Graph Signal Processing 
    
 
    Jiafeng Xia, Dongsheng Li, Hansu Gu, Jiahao Liu, Tun Lu and Ning Gu 
    
 
    
Graph Based Extractive Explainer for Recommendations 
    
 
    Peng Wang, Renqin Cai and Hongning Wang 
    
 
    
Graph Neural Transport Networks with Non-local Attentions for Recommender Systems 
    
 
    Huiyuan Chen, Chin-Chia Michael Yeh, Fei Wang and Hao Yang 
    
 
    
Hypercomplex Graph Collaborative Filtering 
    
 
    Anchen Li, Bo Yang, Huan Huo and Farookh Hussain 
    
 
    
Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning 
    
 
    Zihan Lin, Changxin Tian, Yupeng Hou and Wayne Xin Zhao 
    
 
    
Revisiting Graph Neural Network based Social Recommendation 
    
 
    Ye Tao, Ying Li, Su Zhang, Zhirong Hou and Zhonghai Wu 
    
 
    
STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation 
    
 
    Zhen Yang, Ming Ding, Bin Xu, Hongxia Yang and Jie Tang 
    
 
    
VisGNN: Personalized Visualization Recommendation via Graph Neural Networks 
    
 
    Fayokemi Ojo, Ryan Rossi, Jane Hoffswell, Shunan Guo, Fan Du, Sungchul Kim, Chang Xiao and Eunyee Koh 
    
 
    
Large-scale Personalized Video Game Recommendation via Social-aware Contextualized Graph Neural Network 
    
 
    Liangwei Yang, Zhiwei Liu, Yu Wang, Chen Wang, Ziwei Fan and Philip Yu 
    
 
    
   
 
    
   
     ExpScore: Learning Metrics for Recommendation Explanation (short paper) 
    
 
    Bingbing Wen, Yunhe Feng, Yongfeng Zhang and Chirag Shah 
    
 
    
Path Language Modeling over Knowledge Graphs for Explainable Recommendation 
    
 
    Shijie Geng, Zuohui Fu, Juntao Tan, Yingqiang Ge, Gerard de Melo and Yongfeng Zhang 
    
 
    
Graph Based Extractive Explainer for Recommendations 
    
 
    Peng Wang, Renqin Cai and Hongning Wang 
    
 
    
Accurate and Explainable Recommendation via Review Rationalization 
    
 
    Sicheng Pan, Dongsheng Li, Hansu Gu, Tun Lu, Xufang Luo and Ning Gu 
    
 
    
AmpSum: Adaptive Multiple-Product Summarization towards Improving Recommendation Explainability 
    
 
    Quoc-Tuan Truong, Tong Zhao, Chenghe Yuan, Jin Li, Jim Chan, Soo-Min Pantel and Hady W. Lauw 
    
 
    
Comparative Explanations of Recommendations 
    
 
    Aobo Yang, Nan Wang, Renqin Cai, Hongbo Deng and Hongning Wang 
    
 
    
Neuro-Symbolic Interpretable Collaborative Filtering for Attribute-based Recommendation 
    
 
    Wei Zhang, Junbing Yan, Zhuo Wang and Jianyong Wang 
    
   
 
    
   
     Causal Representation Learning for Out-of-Distribution Recommendation 
    
 
    Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, Min Lin and Tat-Seng Chua 
    
 
    
A Model-Agnostic Causal Learning Framework for Recommendation using Search Data 
    
 
    Zihua Si, Xueran Han, Xiao Zhang, Jun Xu, Yue Yin, Yang Song and Ji-Rong Wen 
    
 
    
Causal Preference Learning for Out-of-Distribution Recommendation 
    
 
    Yue He, Zimu Wang, Peng Cui, Hao Zou, Yafeng Zhang, Qiang Cui and Yong Jiang 
    
 
    
Learning to Augment for Casual User Recommendation 
    
 
    Jianling Wang, Ya Le, Bo Chang, Yuyan Wang, Ed Chi and Minmin Chen 
    
   
 
    
   
     Link Recommendations for PageRank Fairness 
    
 
    Sotiris Tsioutsiouliklis, Konstantinos Semertzidis, Evaggelia Pitoura and Panayiotis Tsaparas 
    
 
    
FairGAN: GANs-based Fairness-aware Learning for Recommendations with Implicit Feedback 
    
 
    Jie Li, Yongli Ren and Ke Deng 
    
 
    
Recommendation Unlearning 
    
 
    Chong Chen, Fei Sun, Min Zhang and Bolin Ding 
    
 
    
Differential Private Knowledge Transfer for Privacy-Preserving Cross-Domain Recommendation 
    
 
    Chaochao Chen, Huiwen Wu, Jiajie Su, Lingjuan Lyu, Xiaolin Zheng and Li Wang 
    
   
 
    
   
     CBR: Context Bias aware Recommendation for Debiasing User Modeling and Click Prediction 
    
 
    Zhi Zheng, Zhaopeng Qiu, Tong Xu, Xian Wu, Xiangyu Zhao, Enhong Chen and Hui Xiong 
    
 
    
Cross Pairwise Ranking for Unbiased Item Recommendation 
    
 
    Qi Wan, Xiangnan He, Xiang Wang, Jiancan Wu, Wei Guo and Ruiming Tang 
    
 
    
Rating Distribution Calibration for Selection Bias Mitigation in Recommendations 
    
 
    Haochen Liu, Da Tang, Ji Yang, Xiangyu Zhao, Hui Liu, Jiliang Tang and Youlong Cheng 
    
 
    
UKD: Debiasing Conversion Rate Estimation via Uncertainty-regularized Knowledge Distillation 
    
 
    Zixuan Xu, Penghui Wei, Weimin Zhang, Shaoguo Liu, Liang Wang and Bo Zheng 
    
 
    
Unbiased Sequential Recommendation with Latent Confounders 
    
 
    Zhenlei Wang, Shiqi Shen, Zhipeng Wang, Bo Chen, Xu Chen and Ji-Rong Wen 
    
   
 
    
   
     Collaborative Filtering with Attribution Alignment for Review-based Non-overlapped Cross Domain Recommendation 
    
 
    Weiming Liu, Xiaolin Zheng, Mengling Hu and Chaochao Chen 
    
 
    
Differential Private Knowledge Transfer for Privacy-Preserving Cross-Domain Recommendation 
    
 
    Chaochao Chen, Huiwen Wu, Jiajie Su, Lingjuan Lyu, Xiaolin Zheng and Li Wang 
    
   
 
    
   
     Improving Personalized Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks 
    
 
    Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James Caverlee 
    
 
    
A Contrastive Sharing Model for Multi-Task Recommendation 
    
 
    Ting Bai, Yudong Xiao, Bin Wu, Guojun Yang, Hongyong Yu and Jian-Yun Nie 
    
   
 
    
   
     Multi-level Recommendation Reasoning over Knowledge Graphs with Reinforcement Learning 
    
 
    Xiting Wang, Kunpeng Liu, Dongjie Wang, Le Wu, Yanjie Fu and Xing Xie 
    
 
    
Multiple Choice Questions based Multi-Interest Policy Learning for Conversational Recommendation 
    
 
    Yiming Zhang, Lingfei Wu, Qi Shen, Yitong Pang, Zhihua Wei, Fangli Xu, Bo Long and Jian Pei 
    
 
    
Off-policy Learning over Heterogeneous Information for Recommendation 
    
 
    Xiangmeng Wang, Qian Li, Dianer Yu and Guandong Xu 
    
   
 
    
   
     Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning 
    
 
    Zihan Lin, Changxin Tian, Yupeng Hou and Wayne Xin Zhao 
    
 
    
A Contrastive Sharing Model for Multi-Task Recommendation 
    
 
    Ting Bai, Yudong Xiao, Bin Wu, Guojun Yang, Hongyong Yu and Jian-Yun Nie 
    
   Intent Contrastive Learning for Sequential Recommendation
Yongjun Chen, Zhiwei Liu, Jia Li, Julian McAuley and Caiming Xiong
 
   
 
    
   
     Alleviating Cold-start Problem in CTR Prediction with A Variational Embedding Learning Framework 
    
 
    Xiaoxiao Xu, Chen Yang, Qian Yu, Zhiwei Fang, Jiaxing Wang, Chaosheng Fan, Yang He, Changping Peng, Zhangang Lin and Jingping Shao 
    
 
    
PNMTA: A Pretrained Network Modulation and Task Adaptation Approach for User Cold-Start Recommendation 
    
 
    Haoyu Pang, Fausto Giunchiglia, Ximing Li, Renchu Guan and Xiaoyue Feng 
    
 
    
KoMen: Domain Knowledge Guided Interaction Recommendation for Emerging Scenarios 
    
 
    Yiqing Xie, Zhen Wang, Carl Yang, Yaliang Li, Bolin Ding, Hongbo Deng and Jiawei Han 
    
   
 
    
   
     Mutually-Regularized Dual Collaborative Variational Auto-encoder for Recommendation Systems 
    
 
    Yaochen Zhu and Zhenzhong Chen 
    
 
    
Stochastic-Expert Variational Autoencoder for Collaborative Filtering 
    
 
    Yoon-Sik Cho and Min-hwan Oh 
    
 
    
Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative Filtering 
    
 
    Jin Chen, Binbin Jin, Xu Huang, Defu Lian, Kai Zheng and Enhong Chen 
    
   
 
    
   
     Equilibria in Auctions with Ad Types 
    
 
    Hadi Elzayn, Riccardo Colini Baldeschi, Brian Lan and Okke Schrijvers 
    
 
    
Calibrated Click-Through Auctions 
    
 
    Dirk Bergemann, Paul Duetting, Renato Paes Leme and Song Zuo 
    
 
    
On Designing a Two-stage Auction for Online Advertising 
    
 
    Yiqing Wang, Xiangyu Liu, Zhenzhe Zheng, Zhilin Zhang, Miao Xu, Chuan Yu and Fan Wu 
    
 
    
Price Manipulability in First-Price Auctions 
    
 
    Johannes Brustle, Paul Duetting and Balasubramanian Sivan 
    
 
    
Cross DQN: Cross Deep Q Network for Ads Allocation in Feed 
    
 
    Guogang Liao, Ze Wang, Xiaoxu Wu, Xiaowen Shi, Chuheng Zhang, Yongkang Wang, Xingxing Wang and Dong Wang 
    
 
    
Investigating Advertisers\’ Domain-changing Behaviors and Their Impacts on Ad-blocker Filter Lists 
    
 
    Su-Chin Lin, Kai-Hsiang Chou, Yen Chen, Hsu-Chun Hsiao, Darion Cassel, Lujo Bauer and Limin Jia 
    
   
 
    
   
     Asymptotically Unbiased Estimation for Delayed Feedback Modeling via Label Correction 
    
 
    Yu Chen, Jiaqi Jin, Hui Zhao, Pengjie Wang, Guojun Liu, Jian Xu and Bo Zheng 
    
 
    
Adaptive Experimentation with Delayed Binary Feedback 
    
 
    Zenan Wang, Carlos Carrion, Xiliang Lin, Fuhua Ji, Yongjun Bao and Weipeng Yan 
    
   
 
    
   
     MINDSim: User Simulator for News Recommenders 
    
 
    Xufang Luo, Zheng Liu, Shitao Xiao, Xing Xie and Dongsheng Li 
    
 
    
FeedRec: News Feed Recommendation with Various User Feedbacks 
    
 
    Chuhan Wu, Fangzhao Wu, Tao Qi, Qi Liu, Xuan Tian, Jie Li, Wei He, Yongfeng Huang and Xing Xie 
    
   
 
    
   
     Distributionally-robust Recommendations for Improving Worst-case User Experience (short paper) 
    
 
    Hongyi Wen, Xinyang Yi, Tiansheng Yao, Jiaxi Tang, Lichan Hong and Ed H. Chi 
    
 
    
Following Good Examples – Health Goal-Oriented Food Recommendation based on Behavior Data 
    
 
    Yabo Ling, Jian-Yun Nie, Daiva Nielsen, Barbel Knauper, Nathan Yang and Laurette Dubé 
    
 
    
Learning Explicit User Interest Boundary for Recommendation 
    
 
    Jianhuan Zhuo, Qiannan Zhu, Yinliang Yue and Yuhong Zhao 
    
 
    
Automating Feature Selection in Deep Recommender Systems 
    
 
    Yejing Wang, Xiangyu Zhao, Tong Xu and Xian Wu 
    
 
    
Choice of Implicit Signal Matters: Accounting for UserAspirations in Podcast Recommendations 
    
 
    Zahra Nazari, Praveen Chandar, Ghazal Fazelnia, Catie Edwards, Benjamin Carterette and Mounia Lalmas 
    
 
    
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering 
    
 
    Seongku Kang, Dongha Lee, Wonbin Kweon, Junyoung Hwang and Hwanjo Yu 
    
 
    
Deep Unified Representation for Heterogeneous Recommendation 
    
 
    Chengqiang Lu, Mingyang Yin, Shuheng Shen, Luo Ji, Qi Liu and Hongxia Yang 
    
 
    
HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric Regularization 
    
 
    Menglin Yang, Min Zhou, Jiahong Liu, Defu Lian and Irwin King 
    
 
    
Learning Recommenders for Implicit Feedback with Importance Resampling 
    
 
    Jin Chen, Binbin Jin, Defu Lian, Kai Zheng and Enhong Chen 
    
 
    
Learning Robust Recommenders through Cross-Model Agreement 
    
 
    Yu Wang, Xin Xin, Zaiqiao Meng, Jeoman Jose, Fuli Feng and Xiangnan He 
    
 
    
Modality Matches Modality: Pretraining Modality-Disentangled Item Representations for Recommendation 
    
 
    Tengyue Han, Pengfei Wang, Shaozhang Niu and Chenliang Li 
    
 
    
Rewiring what-to-watch-next Recommendations to Reduce Radicalization Pathways 
    
 
    Francesco Fabbri, Yanhao Wang, Francesco Bonchi, Carlos Castillo and Michael Mathioudakis 
    
   欢迎干货投稿 \ 论文宣传 \ 合作交流
 
   推荐阅读
 
    
    
    
    
    
     
      
       
        
         
          
          由于公众号试行乱序推送,您可能不再准时收到机器学习与推荐算法的推送。为了第一时间收到本号的干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。