手写决策树

2017 年 9 月 20 日 七月在线实验室

(点击上方公众号,快速关注福利早知道)

 

自Youtube上Google Developers


       原文地址: https://www.youtube.com/watch?v=LDRbO9a6XPU 


   

登录查看更多
4

相关内容

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
88+阅读 · 2019年10月21日
决策树
Datartisan数据工匠
4+阅读 · 2018年4月19日
TensorFlow实例: 手写汉字识别
数据挖掘入门与实战
11+阅读 · 2017年11月10日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
8+阅读 · 2018年11月21日
VIP会员
相关资讯
决策树
Datartisan数据工匠
4+阅读 · 2018年4月19日
TensorFlow实例: 手写汉字识别
数据挖掘入门与实战
11+阅读 · 2017年11月10日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员