项目名称: 脑电非线性动力学特征指标自动定量方法在阿尔茨海默病早期诊断中的应用研究

项目编号: No.11302139

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 张海燕

作者单位: 首都医科大学

项目金额: 29万元

中文摘要: 阿尔茨海默病是一种最常见的发生在老年人中的脑部疾病,也是最常见的痴呆类型,但目前临床上还没有特效的治疗方法。轻度认知功能障碍被认为是预防和控制阿尔茨海默病发生的关键阶段。脑电图是目前临床上研究大脑功能活动和脑疾病诊断的一种经济、无创的检查手段。近年来,大量学者将非线性动力学分析方法应用于阿尔茨海默病的脑电研究,发现脑电信号的非线性动力学特征指标能够反映患者的认知功能损害程度。随着我国人口老龄化进程的加速,阿尔茨海默病的发病率逐年增加。因此,设计和开发脑电的非线性动力学特征指标自动定量算法,实现阿尔茨海默病的早期诊断和干预具有重要的科学意义和临床应用价值。本项目拟综合运用多学科的理论知识和方法,开展脑电非线性动力学特征指标自动定量方法研究,基于支持向量机方法实现轻度认知功能障碍和阿尔茨海默病分类识别的目的。研究成果将推动脑电非线性动力学研究向临床应用的转化,为阿尔茨海默病的早期诊断提供参考。

中文关键词: 阿尔兹海默病;轻度认知功能障碍;脑电;认知功能;非线性动力学

英文摘要: Alzheimer's disease(AD) is the most common form of dementia and the most common brain disease for the elderly. However, currently, there is no effective therapy method for it yet. Mild Congnitive Impair(MCI)is regarded as the key period to prevent and control AD. EEG is an inexpensive and non-invasive tool for brain functional research and diagnosis of brain diseases. In recent years, Nonlinear dynamical analysis of EEG signals has received much attention, and many researches find that nonlinear dynamical features of EEG are helpful for the diagnosis of AD. With the rapid increase of elderly population, the number of AD will increase year by year. Therefore,it is very important to design and develop nonlinear dynamical analysis algorithm for diagnosis of AD from EEG signals. This research try to achieve quantitative analysis of nonlinear dynamical features of EEG signals using multidisciplinary theoretical knowledge and methods, and aims to classify MCI and AD from normal aging using Support Vector Machine(SVM). The results will not only promote the application of nonlinear dynamical analysis from EEG signals to clinical diagnosis of AD, but also provide reference for early diagnosis of AD.

英文关键词: Alzheimer's Disease;Mild Cognitive Impairment;EEG;Cognitive Function;Nonlinear Dynamics

成为VIP会员查看完整内容
0

相关内容

专知会员服务
28+阅读 · 2021年10月6日
专知会员服务
67+阅读 · 2021年6月3日
专知会员服务
37+阅读 · 2021年4月23日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
基于生理信号的情感计算研究综述
专知会员服务
63+阅读 · 2021年2月9日
专知会员服务
28+阅读 · 2021年1月29日
专知会员服务
71+阅读 · 2021年1月16日
多模态情绪识别研究综述
专知会员服务
169+阅读 · 2020年12月21日
研究实锤来了:困了又不睡,DNA易报废!
学术头条
1+阅读 · 2021年12月6日
自动化所人工智能辅助诊断方法进入肿瘤诊疗指南
中国科学院自动化研究所
1+阅读 · 2021年9月3日
基于规则的建模方法的可解释性及其发展
专知
5+阅读 · 2021年6月23日
深度学习与医学图像分析
人工智能前沿讲习班
40+阅读 · 2019年6月8日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
15+阅读 · 2021年11月19日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
11+阅读 · 2018年5月13日
小贴士
相关VIP内容
专知会员服务
28+阅读 · 2021年10月6日
专知会员服务
67+阅读 · 2021年6月3日
专知会员服务
37+阅读 · 2021年4月23日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
基于生理信号的情感计算研究综述
专知会员服务
63+阅读 · 2021年2月9日
专知会员服务
28+阅读 · 2021年1月29日
专知会员服务
71+阅读 · 2021年1月16日
多模态情绪识别研究综述
专知会员服务
169+阅读 · 2020年12月21日
相关资讯
研究实锤来了:困了又不睡,DNA易报废!
学术头条
1+阅读 · 2021年12月6日
自动化所人工智能辅助诊断方法进入肿瘤诊疗指南
中国科学院自动化研究所
1+阅读 · 2021年9月3日
基于规则的建模方法的可解释性及其发展
专知
5+阅读 · 2021年6月23日
深度学习与医学图像分析
人工智能前沿讲习班
40+阅读 · 2019年6月8日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员