The states of a deterministic finite automaton A can be identified with collections of words in Pf(L(A)) -- the set of prefixes of words belonging to the regular language accepted by A. But words can be ordered and among the many possible orders a very natural one is the co-lexicographic one. Such naturalness stems from the fact that it suggests a transfer of the order from words to the automaton's states. In a number of papers automata admitting a total ordering of states coherent with the ordering of the set of words reaching them have been proposed. Such class of ordered automata -- the Wheeler automata -- turned out to be efficiently stored/searched using an index. Unfortunately not all automata can be totally ordered as previously outlined. However, automata can always be partially ordered and an intrinsic measure of their complexity can be defined and effectively determined, as the minimum width of one of their admissible partial orders. As shown in previous works, this new concept of width of an automaton has useful consequences in the fields of graph compression, indexing data structures, and automata theory. In this paper we prove that a canonical, minimum-width, partially-ordered automaton accepting a language L -- dubbed the Hasse automaton H of L -- can be exhibited. H provides, in a precise sense, the best possible way to (partially) order the states of any automaton accepting L, as long as we want to maintain an operational link with the (co-lexicographic) order of Pf(L(A)). Using H we prove that the width of the language can be effectively computed from the minimum automaton recognizing the language. Finally, we explore the relationship between two (often conflicting) objectives: minimizing the width and minimizing the number of states of an automaton.


翻译:确定性自定义自动图A 的状态可以与 Pf(L(A) ) 中存储的自定义语言( L(L(A)) ) 的字数相匹配。 属于 A 所接受的正统语言的词数预言组。 但是, 文字可以排序, 在许多可能的非常自然的顺序中, 一个非常自然的顺序是共同的。 这种自然性源于这样的事实: 它表示将顺序从文字转移到自定义的自定义状态中最小宽度。 在一些自定义的页面中, 承认了国家总顺序与自定义的字数一致 。 这种自定义的自定义( 自定义的自定义字数) 在自定义的自定义、 自定义数据结构、 自定义的自定义的自定义语言中最小化的自定义 。 在自定义的自定义的自定义语言中, 我们自定义的自定义自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义语言到自定义的自定义的自定义的自定义。 在自定义的自定义的自定义的自定义状态中, 自定义的自定义的自定义的自定义的自定义的自定义语言为自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义状态, 自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义状态,自定义状态, 自定义到自定义的自定义的自定义的自定义到自定义的自定义的自定义的自定义的自定义的自定义到自定义的自定义的自定义的自制的自定义的自制的自定义的自定义的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制,自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自制的自

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
111+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
0+阅读 · 2021年7月27日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
111+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
0+阅读 · 2021年7月27日
Top
微信扫码咨询专知VIP会员