Recently, Foursquare released a global dataset with more than 100 million points of interest (POIs), each representing a real-world business on its platform. However, many entries lack complete metadata such as addresses or categories, and some correspond to non-existent or fictional locations. In contrast, OpenStreetMap (OSM) offers a rich, user-contributed POI dataset with detailed and frequently updated metadata, though it does not formally verify whether a POI represents an actual business. In this data paper, we present a methodology that integrates the strengths of both datasets: Foursquare as a comprehensive baseline of commercial POIs and OSM as a source of enriched metadata. The combined dataset totals approximately 1 TB. While this full version is not publicly released, we provide filtered releases with adjustable thresholds that reduce storage needs and make the data practical to download and use across domains. We also provide step-by-step instructions to reproduce the full 631 GB build. Record linkage is achieved by computing name similarity scores and spatial distances between Foursquare and OSM POIs. These measures identify and retain high-confidence matches that correspond to real businesses in Foursquare, have representations in OSM, and show strong name similarity. Finally, we use this filtered dataset to construct a graph-based representation of POIs enriched with attributes from both sources, enabling advanced spatial analyses and a range of downstream applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

foursquare 是一家基于用户地理位置信息的手机服务,鼓励手机用户同他人分享自己当前所在地理位置等信息。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2022年9月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员