Since 2012, tetrodotoxin (TTX) has been found in seafoods such as bivalve mollusks in temperate European waters. TTX contamination leads to food safety risks and economic losses, making early prediction of TTX contamination vital to the food industry and competent authorities. Recent studies have pointed to shallow habitats and water temperature as main drivers to TTX contamination in bivalve mollusks. However, the temporal relationships between abiotic factors, biotic factors, and TTX contamination remain unexplored. We have developed an explainable, deep learning-based model to predict TTX contamination in the Dutch Zeeland estuary. Inputs for the model were meteorological and hydrological features; output was the presence or absence of TTX contamination. Results showed that the time of sunrise, time of sunset, global radiation, water temperature, and chloride concentration contributed most to TTX contamination. Thus, the effective number of sun hours, represented by day length and global radiation, was an important driver for tetrodotoxin contamination in bivalve mollusks. To conclude, our explainable deep learning model identified the aforementioned environmental factors (number of sun hours, global radiation, water temperature, and water chloride concentration) to be associated with tetrodotoxin contamination in bivalve mollusks; making our approach a valuable tool to mitigate marine toxin risks for food industry and competent authorities.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员