In the current digital age, the volume of data generated by various cyber activities has become enormous and is constantly increasing. The data may contain valuable insights that can be harnessed to improve cyber security measures. However, much of this data is unclassified and qualitative, which poses significant challenges to traditional analysis methods. Clustering facilitates the identification of hidden patterns and structures in data through grouping similar data points, which makes it simpler to identify and address threats. Clustering can be defined as a data mining (DM) approach, which uses similarity calculations for dividing a data set into several categories. Hierarchical, density-based, along with partitioning clustering algorithms are typical. The presented work use K-means algorithm, which is a popular clustering technique. Utilizing K-means algorithm, we worked with two different types of data: first, we gathered data with the use of XG-boost algorithm following completing the aggregation with K-means algorithm. Data was gathered utilizing Kali Linux environment, cicflowmeter traffic, and Putty Software tools with the use of diverse and simple attacks. The concept could assist in identifying new attack types, which are distinct from the known attacks, and labeling them based on the characteristics they will exhibit, as the dynamic nature regarding cyber threats means that new attack types often emerge, for which labeled data might not yet exist. The model counted the attacks and assigned numbers to each one of them. Secondly, We tried the same work on the ready data inside the Kaggle repository called (Intrusion Detection in Internet of Things Network), and the clustering model worked well and detected the number of attacks correctly as shown in the results section.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员