We study nonparametric estimation of a probability mass function (PMF) on a large discrete support, where the PMF is multi-modal and heavy-tailed. The core idea is to treat the empirical PMF as a signal on a line graph and apply a data-dependent low-pass filter. Concretely, we form a symmetric tri-diagonal operator, the path graph Laplacian perturbed with a diagonal matrix built from the empirical PMF, then compute the eigenvectors, corresponding to the smallest feq eigenvalues. Projecting the empirical PMF onto this low dimensional subspace produces a smooth, multi-modal estimate that preserves coarse structure while suppressing noise. A light post-processing step of clipping and re-normalizing yields a valid PMF. Because we compute the eigenpairs of a symmetric tridiagonal matrix, the computation is reliable and runs time and memory proportional to the support times the dimension of the desired low-dimensional supspace. We also provide a practical, data-driven rule for selecting the dimension based on an orthogonal-series risk estimate, so the method "just works" with minimal tuning. On synthetic and real heavy-tailed examples, the approach preserves coarse structure while suppressing sampling noise, compares favorably to logspline and Gaussian-KDE baselines in the intended regimes. However, it has known failure modes (e.g., abrupt discontinuities). The method is short to implement, robust across sample sizes, and suitable for automated pipelines and exploratory analysis at scale because of its reliability and speed.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员