We propose a novel statistical test to assess the mutual independence of multidimensional random vectors. Our approach is based on the $L_1$-distance between the joint density function and the product of the marginal densities associated with the presumed independent vectors. Under the null hypothesis, we employ Poissonization techniques to establish the asymptotic normal approximation of the corresponding test statistic, without imposing any regularity assumptions on the underlying Lebesgue density function, denoted as $f(\cdot)$. Remarkably, we observe that the limiting distribution of the $L_1$-based statistics remains unaffected by the specific form of $f(\cdot)$. This unexpected outcome contributes to the robustness and versatility of our method. Moreover, our tests exhibit nontrivial local power against a subset of local alternatives, which converge to the null hypothesis at a rate of {${\tiny n^{\tiny -1/2}h_n^{\tiny -{d/4}}}$}, $d\geq 2$, where $n$ represents the sample size and $h_n$ denotes the bandwidth. Finally, the theory is supported by a comprehensive simulation study to investigate the finite-sample performance of our proposed test. The results demonstrate that our testing procedure generally outperforms existing approaches across various examined scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员