We apply the recently developed least squares stabilized symmetric Nitsche method for enforcement of Dirichlet boundary conditions to the finite cell method. The least squares stabilized Nitsche method in combination with finite cell stabilization leads to a symmetric positive definite stiffness matrix and relies only on elementwise stabilization, which does not lead to additional fill in. We prove a priori error estimates and bounds on the condition numbers.


翻译:我们将最近开发的最小方块稳定对称尼采法用于执行Drichlet边界条件的有限单元格方法。最小方块稳定尼采法与有限细胞稳定结合,形成一个对称正确定硬度矩阵,仅依赖元素稳定,不会导致额外填充。我们证明了先验误差估计和条件编号的界限。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
77+阅读 · 2021年12月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员