Automatic verification of concurrent programs faces state explosion due to the exponential possible interleavings of its sequential components coupled with large or infinite state spaces. An alternative is deductive verification, where given a candidate invariant, we establish inductive invariance and show that any state satisfying the invariant is also safe. However, learning (inductive) program invariants is difficult. To this end, we propose a data-driven procedure to synthesize program invariants, where it is assumed that the program invariant is an expression that characterizes a (hopefully tight) over-approximation of the reachable program states. The main ideas of our approach are: (1) We treat a candidate invariant as a classifier separating states observed in (sampled) program traces from those speculated to be unreachable. (2) We develop an enumerative, template-free approach to learn such classifiers from positive and negative examples. At its core, our enumerative approach employs decision trees to generate expressions that do not over-fit to the observed states (and thus generalize). (3) We employ a runtime framework to monitor program executions that may refute the candidate invariant; every refutation triggers a revision of the candidate invariant. Our runtime framework can be viewed as an instance of statistical model checking, which gives us probabilistic guarantees on the candidate invariant. We also show that such in some cases, our counterexample-guided inductive synthesis approach converges (in probability) to an overapproximation of the reachable set of states. Our experimental results show that our framework excels in learning useful invariants using only a fraction of the set of reachable states for a wide variety of concurrent programs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月16日
Arxiv
0+阅读 · 2024年2月15日
Arxiv
0+阅读 · 2024年2月13日
Arxiv
0+阅读 · 2024年2月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月16日
Arxiv
0+阅读 · 2024年2月15日
Arxiv
0+阅读 · 2024年2月13日
Arxiv
0+阅读 · 2024年2月13日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员