Kernel Stein discrepancies (KSDs) have become a principal tool for goodness-of-fit testing, but standard KSDs are often insensitive to higher-order dependency structures, such as tail dependence, which are critical in many scientific and financial domains. We address this gap by introducing the Copula-Stein Discrepancy (CSD), a novel class of discrepancies tailored to the geometry of statistical dependence. By defining a Stein operator directly on the copula density, CSD leverages the generative structure of dependence, rather than relying on the joint density's score function. For the broad class of Archimedean copulas, this approach yields a closed-form Stein kernel derived from the scalar generator function. We provide a comprehensive theoretical analysis, proving that CSD (i) metrizes weak convergence of copula distributions, ensuring it detects any mismatch in dependence; (ii) has an empirical estimator that converges at the minimax optimal rate of $O_P(n^{-1/2})$; and (iii) is provably sensitive to differences in tail dependence coefficients. The framework is extended to general non-Archimedean copulas, including elliptical and vine copulas. Computationally, the exact CSD kernel evaluation scales linearly in dimension, while a novel random feature approximation reduces the $n$-dependence from quadratic $O(n^2)$ to near-linear $\tilde{O}(n)$, making CSD a practical and theoretically principled tool for dependence-aware inference.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员