Large-scale deep neural networks consume expensive training costs, but the training results in less-interpretable weight matrices constructing the networks. Here, we propose a mode decomposition learning that can interpret the weight matrices as a hierarchy of latent modes. These modes are akin to patterns in physics studies of memory networks, but the least number of modes increases only logarithmically with the network width, and becomes even a constant when the width further grows. The mode decomposition learning not only saves a significant large amount of training costs, but also explains the network performance with the leading modes, displaying a striking piecewise power-law behavior. The modes specify a progressively compact latent space across the network hierarchy, making a more disentangled subspaces compared to standard training. Our mode decomposition learning is also studied in an analytic on-line learning setting, which reveals multi-stage of learning dynamics with a continuous specialization of hidden nodes. Therefore, the proposed mode decomposition learning points to a cheap and interpretable route towards the magical deep learning.


翻译:大型深心神经网络花费昂贵的培训费用, 但培训结果导致建设网络的重量矩阵解释得较少。 在这里, 我们提出一个模式分解学习模式, 可以将重量矩阵解释为潜伏模式的等级。 这些模式类似于记忆网络物理研究的模式, 但最小的模型数量只会随着网络宽度的对数增加, 并在宽度进一步增大时变成一个常数。 模式分解学习不仅可以节省大量的培训费用, 还可以用领先模式解释网络的性能, 展示出惊人的片断电法行为。 这些模式指定了网络结构中逐渐紧凑的潜伏空间, 使得与标准培训相比, 更加分解的子空间。 我们的模式分解学习模式也在在线学习环境中进行分析研究, 分析显示多阶段的学习动态, 并不断对隐藏节点进行专业化。 因此, 拟议的模式分解将学习点分为一种廉价和可解释的路径, 通往神奇的深层学习。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Arxiv
45+阅读 · 2022年9月19日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2019年11月14日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员