Besov priors are nonparametric priors that model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of the asymptotic frequentist convergence properties of Besov priors. In the present paper, we consider the theoretical recovery performance of the associated posterior distributions in the density estimation model, under the assumption that the observations are generated by a spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov priors attain optimal posterior contraction rates. Furthermore, we show that a hierarchical procedure involving a hyper-prior on the regularity parameter leads to adaptation to any smoothness level.


翻译:贝索夫前列物是模拟空间不相容功能的非参数前列物,通常用于反向问题和成像,展示有吸引力的聚度促进和边缘保护特征。最近的一项工作开始研究贝索夫前列物的无症状常态趋同特性。在本文件中,我们考虑了密度估计模型中相关后端分布的理论恢复性能,假设观测结果来自属于贝索夫空间的空间不相容真实密度。我们改进了现有结果,并表明仔细调整的贝索夫前列物达到最佳后端收缩率。此外,我们表明,一个涉及常态参数超优先性的等级程序导致对平稳水平的适应。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员