We introduce profile matching, a multivariate matching method for randomized experiments and observational studies that finds the largest possible unweighted samples across multiple treatment groups that are balanced relative to a covariate profile. This covariate profile can represent a specific population or a target individual, facilitating the generalization and personalization of causal inferences. For generalization, because the profile often amounts to summary statistics for a target population, profile matching does not always require accessing individual-level data, which may be unavailable for confidentiality reasons. For personalization, the profile comprises the characteristics of a single individual. Profile matching achieves covariate balance by construction, but unlike existing approaches to matching, it does not require specifying a matching ratio, as this is implicitly optimized for the data. The method can also be used for the selection of units for study follow-up, and it readily applies to multi-valued treatments with many treatment categories. We evaluate the performance of profile matching in a simulation study of the generalization of a randomized trial to a target population. We further illustrate this method in an exploratory observational study of the relationship between opioid use and mental health outcomes. We analyze these relationships for three covariate profiles representing: (i) sexual minorities, (ii) the Appalachian United States, and (iii) the characteristics of a hypothetical vulnerable patient. The method can be implemented via the new function profmatch in the designmatch package for R, for which we provide a step-by-step tutorial.


翻译:我们引入了配置匹配, 即随机实验和观察研究的多变量匹配方法, 发现在多个处理组之间最大可能的未加权样本, 这些样本与共变剖面相比是平衡的。 共变剖面可以代表特定人群或目标个人, 有利于因果推断的概括化和个性化。 对于概括化而言, 因为剖面通常相当于目标人群的汇总统计数据, 配置匹配并不总是需要获取个人层面的数据, 这些数据可能因保密原因而无法获得 。 对于个人化而言, 剖面配置包含单个个体的特征。 配置匹配通过构建实现共变平衡, 但与现有的匹配方法不同, 它并不要求指定匹配比例, 因为这对数据是暗含的优化 。 该方法也可以用于选择用于研究后续的单位, 并且很容易适用于多个治疗类别中的多价治疗。 我们评估剖面配置的匹配性测试工作绩效, 对目标人群进行模拟的随机测试。 我们进一步展示了这一方法, 对类阿片使用和心理健康结果之间的关系进行探索性研究, 但与现有方法不同, 我们分析这些关系, 用于三个共同设计方法 的性别剖面图 。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
109+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
109+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
12+阅读 · 2021年6月29日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
112+阅读 · 2020年2月5日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员