LLM-based coding agents are increasingly common but still face challenges in context management, latency, reliability, reproducibility, and scalability. We present Agint, an agentic graph compiler, interpreter, and runtime that incrementally and hierarchically converts natural-language instructions into typed, effect-aware code DAGs. Agint introduces explicit type floors (text to data to spec to code) grounded in semantic graph transformations and a hybrid LLM and function-based JIT runtime. This enables dynamic graph refinement, reproducible and optimizable execution, speculative evaluation, and interoperability with existing developer tools. Agint's typed graph bindings improve reliability and allow concurrent composition of concurrent codebases by construction, supporting accelerated development with smaller and faster models, lower latency, efficient context utilization, and higher throughput. Hierarchical compilation allows scalable graph edits, while the graph structure supports reproducibility and efficient parallel generation. Agint provides a composable unix-style toolchain: dagify (DAG compiler), dagent (hybrid JIT runtime), schemagin (schema generator), and datagin (data transformer) for realtime, low-latency code and dataflow creation. Human developers and coding agents refine graphs through the Agint CLI, while non-technical users use Agint Flow GUI for visual editing, conversational refinement, and debugging to promote prototype agentic workflows to production code. This continuous co-creation model allows teams to prototype quickly, refine seamlessly, and deploy reliably, bridging natural language, compiler methods, and developer tooling to enable a new generation of composable, team-centric coding agents at scale.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月3日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员