We introduce a method that automatically and jointly updates both continuous and discrete parameters of a compound lens design, to improve its performance in terms of sharpness, speed, or both. Previous methods for compound lens design use gradient-based optimization to update continuous parameters (e.g., curvature of individual lens elements) of a given lens topology, requiring extensive expert intervention to realize topology changes. By contrast, our method can additionally optimize discrete parameters such as number and type (e.g., singlet or doublet) of lens elements. Our method achieves this capability by combining gradient-based optimization with a tailored Markov chain Monte Carlo sampling algorithm, using transdimensional mutation and paraxial projection operations for efficient global exploration. We show experimentally on a variety of lens design tasks that our method effectively explores an expanded design space of compound lenses, producing better designs than previous methods and pushing the envelope of speed-sharpness tradeoffs achievable by automated lens design.
翻译:暂无翻译