We propose a combined nodal integration and virtual element method for compressible and nearly incompressible plane elasticity, wherein the strain is averaged at the nodes from the strain of surrounding virtual elements. For the strain averaging procedure, a nodal averaging operator is constructed using a generalization to virtual elements of the node-based uniform strain approach for finite elements. We refer to these new elements as node-based uniform strain virtual elements (NVEM). No additional degrees of freedom are introduced in this approach, thus resulting in a displacement-based formulation. A salient feature of the NVEM is that the stresses and strains become nodal variables just like displacements, which can be exploited in nonlinear simulations. Through several benchmark problems in plane elasticity, we demonstrate that the NVEM is accurate and optimally convergent, and devoid of volumetric locking in the nearly incompressible limit.


翻译:我们建议采用综合节点集成和虚拟要素方法,以压缩和几乎无法压缩的平面弹性,使压力在与周围虚拟元素紧张的节点上平均,在平均程序方面,利用节点平均操作程序,将节点平均操作器建成为对有限元素采用基于节点的统一收缩方法的虚拟要素,将这些新要素称为基于节点的统一收缩虚拟要素(NVEM),在这一方法中不再引入更多的自由度,从而导致一种基于流离失所的配方。NVEM的一个突出特点是,压力和紧张变成与异变一样的节点变量,可以在非线性模拟中加以利用。我们通过在平面弹性方面的几个基准问题,证明NVEM是准确和最佳集中的,并且没有将体积锁定在几乎不可压缩的极限中。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月27日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员