Table recognition is using the computer to automatically understand the table, to detect the position of the table from the document or picture, and to correctly extract and identify the internal structure and content of the table. After earlier mainstream approaches based on heuristic rules and machine learning, the development of deep learning techniques has brought a new paradigm to this field. This review mainly discusses the table recognition problem from five aspects. The first part introduces data sets, benchmarks, and commonly used evaluation indicators. This section selects representative data sets, benchmarks, and evaluation indicators that are frequently used by researchers. The second part introduces the table recognition model. This survey introduces the development of the table recognition model, especially the table recognition model based on deep learning. It is generally accepted that table recognition is divided into two stages: table detection and table structure recognition. This section introduces the models that follow this paradigm (TD and TSR). The third part is the End-to-End method, this section introduces some scholars' attempts to use an end-to-end approach to solve the table recognition problem once and for all and the part are Data-centric methods, such as data augmentation, aligning benchmarks, and other methods. The fourth part is the data-centric approach, such as data enhancement, alignment benchmark, and so on. The fifth part summarizes and compares the experimental data in the field of form recognition, and analyzes the mainstream and more advantageous methods. Finally, this paper also discusses the possible development direction and trend of form processing in the future, to provide some ideas for researchers in the field of table recognition. (Resource will be released at https://github.com/Wa1den-jy/Topic-on-Table-Recognition .)


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月26日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员