Clustering methods group data points together and assign them group-level labels. However, it has been difficult to evaluate the confidence of the clustering results. Here, we introduce a novel method that could not only find robust clusters but also provide a confidence score for the labels of each data point. Specifically, we reformulated label-propagation clustering to model after forest fire dynamics. The method has only one parameter - a fire temperature term describing how easily one label propagates from one node to the next. Through iteratively starting label propagations through a graph, we can discover the number of clusters in a dataset with minimum prior assumptions. Further, we can validate our predictions and uncover the posterior probability distribution of the labels using Monte Carlo simulations. Lastly, our iterative method is inductive and does not need to be retrained with the arrival of new data. Here, we describe the method and provide a summary of how the method performs against common clustering benchmarks.


翻译:分组方法将数据点组合在一起, 并指定分组标签 。 但是, 很难评估组群结果的可信度 。 在此, 我们引入了一种新的方法, 不仅可以找到稳健的组群, 还可以为每个数据点的标签提供信任分 。 具体地说, 我们重塑了标签- 配置组群, 在森林火灾动态后进行模型。 方法只有一个参数 - 一个火温术语, 描述一个标签从一个节点传播到下一个节点的容易程度 。 通过一个图解反复启动标签传播, 我们可以在数据集中发现组群的数量, 并且有最低的先前假设 。 此外, 我们可以验证我们的预测, 并用蒙特卡洛 模拟来发现标签的外在概率分布 。 最后, 我们的迭代方法不易被重新训练为新数据的到达 。 在此, 我们描述该方法, 并提供一个方法是如何按照共同的群集基准运行的概要 。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
164+阅读 · 2020年6月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
250+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月14日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
164+阅读 · 2020年6月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
250+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员