Many practical prediction algorithms represent inputs in Euclidean space and replace the discrete 0/1 classification loss with a real-valued surrogate loss, effectively reducing classification tasks to stochastic optimization. In this paper, we investigate the expressivity of such reductions in terms of key resources, including dimension and the role of randomness. We establish bounds on the minimum Euclidean dimension $D$ needed to reduce a concept class with VC dimension $d$ to a Stochastic Convex Optimization (SCO) problem in $\mathbb{R}^D$, formally addressing the intuitive interpretation of the VC dimension as the number of parameters needed to learn the class. To achieve this, we develop a generalization of the Borsuk-Ulam Theorem that combines the classical topological approach with convexity considerations. Perhaps surprisingly, we show that, in some cases, the number of parameters $D$ must be exponentially larger than the VC dimension $d$, even if the reduction is only slightly non-trivial. We also present natural classification tasks that can be represented in much smaller dimensions by leveraging randomness, as seen in techniques like random initialization. This result resolves an open question posed by Kamath, Montasser, and Srebro (COLT 2020). Our findings introduce new variants of \emph{dimension complexity} (also known as \emph{sign-rank}), a well-studied parameter in learning and complexity theory. Specifically, we define an approximate version of sign-rank and another variant that captures the minimum dimension required for a reduction to SCO. We also propose several open questions and directions for future research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员