The Bidirectional Encoder Representations from Transformers (BERT) were proposed in the natural language process (NLP) and shows promising results. Recently researchers applied the BERT to source-code representation learning and reported some good news on several downstream tasks. However, in this paper, we illustrated that current methods cannot effectively understand the logic of source codes. The representation of source code heavily relies on the programmer-defined variable and function names. We design and implement a set of experiments to demonstrate our conjecture and provide some insights for future works.


翻译:在自然语言过程中提出了来自变换器的双向编码说明,并显示出有希望的结果。最近研究人员将BERT应用于源代码说明学习,并就一些下游任务报告了一些好消息。然而,在本文件中,我们指出,目前的方法无法有效地理解源代码的逻辑。源代码的表述在很大程度上依赖于程序员定义的变量和函数名称。我们设计并实施了一套实验,以展示我们的推测,并为未来的工程提供一些见解。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
51+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员