Sequential posted pricing auctions are popular because of their simplicity in practice and their tractability in theory. A usual assumption in their study is that the Bayesian prior distributions of the buyers are known to the seller, while in reality these priors can only be accessed from historical data. To overcome this assumption, we study sequential posted pricing in the bandit learning model, where the seller interacts with $n$ buyers over $T$ rounds: In each round the seller posts $n$ prices for the $n$ buyers and the first buyer with a valuation higher than the price takes the item. The only feedback that the seller receives in each round is the revenue. Our main results obtain nearly-optimal regret bounds for single-item sequential posted pricing in the bandit learning model. In particular, we achieve an $\tilde{O}(\mathsf{poly}(n)\sqrt{T})$ regret for buyers with (Myerson's) regular distributions and an $\tilde{O}(\mathsf{poly}(n)T^{{2}/{3}})$ regret for buyers with general distributions, both of which are tight in the number of rounds $T$. Our result for regular distributions was previously not known even for the single-buyer setting and relies on a new half-concavity property of the revenue function in the value space. For $n$ sequential buyers, our technique is to run a generalized single-buyer algorithm for all the buyers and to carefully bound the regret from the sub-optimal pricing of the suffix buyers.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员