Quantum Key Distribution(QKD) thrives to achieve perfect secrecy of One time Pad (OTP) through quantum processes. One of the crucial components of QKD are Quantum Random Number Generators(QRNG) for generation of keys. Unfortunately, these QRNG does not immediately produce usable bits rather it produces raw bits with high entropy but low uniformity which can be hardly used by any cryptographic system. A lot of pre-processing is required before the random numbers generated by QRNG to be usable. This causes a bottle neck in random number generation rate as well as QKD system relying on it. To avoid this lacuna of post-processing methods employed as a central part of Quantum Random Number Generators alternative approaches that satisfy the entropy(non determinism) and quantum security is explored. Pseudorandom generators based on quantum secure primitives could be an alternative to the post-processing problem as PRNGs are way more faster than any random number generator employing physical randomness (quantum mechanical process in QRNG) as well as it can provide uniform bits required for cryptography application. In this work we propose a pseudorandom generator based on post quantum primitives. The central theme of this random number generator is designing PRNG with non deterministic entropy generated through hard lattice problem - Learning with errors. We leverage the non determinism by Gaussian errors of LWE to construct non-deterministic PRNG satisfying the entropy requirement of QKD. Further, the paper concludes by evaluating the PRNG through Die-Harder Test.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2023年6月23日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
15+阅读 · 2022年5月14日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
25+阅读 · 2023年6月23日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
15+阅读 · 2022年5月14日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员