The production, shipping, usage, and disposal of consumer goods have a substantial impact on greenhouse gas emissions and the depletion of resources. Modern retail platforms rely heavily on Machine Learning (ML) for their search and recommender systems. Thus, ML can potentially support efforts towards more sustainable consumption patterns, for example, by accounting for sustainability aspects in product search or recommendations. However, leveraging ML potential for reaching sustainability goals requires data on sustainability. Unfortunately, no open and publicly available database integrates sustainability information on a product-by-product basis. In this work, we present the GreenDB, which fills this gap. Based on search logs of millions of users, we prioritize which products users care about most. The GreenDB schema extends the well-known schema.org Product definition and can be readily integrated into existing product catalogs to improve sustainability information available for search and recommendation experiences. We present our proof of concept implementation of a scraping system that creates the GreenDB dataset.


翻译:消费品的生产、航运、使用和处置对温室气体排放和资源耗竭有重大影响。现代零售平台在搜索和建议系统方面严重依赖机器学习(ML),因此,ML有可能支持更可持续的消费模式,例如,在产品搜索或建议中考虑到可持续性方面。然而,利用ML潜力实现可持续性目标需要可持续性数据。不幸的是,没有开放和公开的数据库将逐项产品的可持续性信息纳入其中。在这项工作中,我们介绍了填补这一差距的绿色数据库。根据数百万用户的搜索日志,我们优先考虑哪些产品用户最关心这一问题。GreenDB Schema扩展了众所周知的schema.org产品定义,并且可以很容易地纳入现有的产品目录,以改进可供搜索和建议经验使用的可持续性信息。我们提供了我们实施概念的证据,以建立一个绿色数据库。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
How to Assess Trustworthy AI in Practice
Arxiv
0+阅读 · 2022年6月28日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员