Open data is frequently released spatially and temporally aggregated, usually to comply with privacy policies. Varying aggregation levels (e.g., zip code, census tract, city block) complicate the integration across variables needed to provide multi-variate training sets for downstream AI/ML systems. In this work, we consider models to disaggregate spatial data, learning a function from a low-resolution irregular partition (e.g., zip code) to s high-resolution irregular partition (e.g., city block). We propose a hierarchical architecture that aligns each geographic aggregation level with a layer in the network such that all aggregation levels can be learned simultaneously by including loss terms for all intermediate levels as well as the final output. We then consider additional loss terms that compare the re-aggregated output against ground truth to further improve performance. To balance the tradeoff between training time and accuracy, we consider three training regimes, including a layer-by-layer process that achieves competitive predictions with significantly reduced training time. For situations where limited historical training data is available, we study transfer learning scenarios and show that a model pre-trained on one city variable can be fine-tuned for another city variable using only a few hundred samples, highlighting the common dynamics among variables from the same built environment and underlying population. Evaluating these techniques on four datasets across two cities, three variables, and two application domains, we find that geographically coherent architectures provide a significant improvement over baseline models as well as typical heuristic methods, advancing our long-term goal of synthesizing any variable, at any location, at any resolution.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员