Progressive dimensionality reduction algorithms allow for visually investigating intermediate results, especially for large data sets. While different algorithms exist that progressively increase the number of data points, we propose an algorithm that allows for increasing the number of dimensions. Especially in spatio-temporal data, where each spatial location can be seen as one data point and each time step as one dimension, the data is often stored in a format that supports quick access to the individual dimensions of all points. Therefore, we propose Progressive Glimmer, a progressive multidimensional scaling (MDS) algorithm. We adapt the Glimmer algorithm to support progressive updates for changes in the data's dimensionality. We evaluate Progressive Glimmer's embedding quality and runtime. We observe that the algorithm provides more stable results, leading to visually consistent results for progressive rendering and making the approach applicable to streaming data. We show the applicability of our approach to spatio-temporal simulation ensemble data where we add the individual ensemble members progressively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年12月2日
Arxiv
0+阅读 · 2024年11月28日
Arxiv
30+阅读 · 2022年9月10日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年12月2日
Arxiv
0+阅读 · 2024年11月28日
Arxiv
30+阅读 · 2022年9月10日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
15+阅读 · 2022年1月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员