Prize-Collecting Steiner Tree (PCST) is a generalization of the Steiner Tree problem, a fundamental problem in computer science. In the classic Steiner Tree problem, we aim to connect a set of vertices known as terminals using the minimum-weight tree in a given weighted graph. In this generalized version, each vertex has a penalty, and there is flexibility to decide whether to connect each vertex or pay its associated penalty, making the problem more realistic and practical. Both the Steiner Tree problem and its Prize-Collecting version had long-standing $2$-approximation algorithms, matching the integrality gap of the natural LP formulations for both. This barrier for both problems has been surpassed, with algorithms achieving approximation factors below $2$. While research on the Steiner Tree problem has led to a series of reductions in the approximation ratio below $2$, culminating in a $\ln(4)+\epsilon$ approximation by Byrka, Grandoni, Rothvo{\ss}, and Sanit\`a, the Prize-Collecting version has not seen improvements in the past 15 years since the work of Archer, Bateni, Hajiaghayi, and Karloff, which reduced the approximation factor for this problem from $2$ to $1.9672$. Interestingly, even the Prize-Collecting TSP approximation, which was first improved below $2$ in the same paper, has seen several advancements since then. In this paper, we reduce the approximation factor for the PCST problem substantially to 1.7994 via a novel iterative approach.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
30+阅读 · 2019年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员