In practical massive multiple-input multiple-output (MIMO) systems, the precoding matrix is often obtained from the eigenvectors of channel matrices and is challenging to update in time due to finite computation resources at the base station, especially in mobile scenarios. In order to reduce the precoding complexity while enhancing the spectral efficiency (SE), a novel precoding matrix prediction method based on the eigenvector prediction (EGVP) is proposed. The basic idea is to decompose the periodic uplink channel eigenvector samples into a linear combination of the channel state information (CSI) and channel weights. We further prove that the channel weights can be interpolated by an exponential model corresponding to the Doppler characteristics of the CSI. A fast matrix pencil prediction (FMPP) method is also devised to predict the CSI. We also prove that our scheme achieves asymptotically error-free precoder prediction with a distinct complexity advantage. Simulation results show that under the perfect non-delayed CSI, the proposed EGVP method reduces floating point operations by 80\% without losing SE performance compared to the traditional full-time precoding scheme. In more realistic cases with CSI delays, the proposed EGVP-FMPP scheme has clear SE performance gains compared to the precoding scheme widely used in current communication systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
基于深度元学习的因果推断新方法
图与推荐
12+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员