We study the complexity of testing properties of quantum channels. First, we show that testing identity to any channel $\mathcal N: \mathbb C^{d_{\mathrm{in}} \times d_{\mathrm{in}}} \to \mathbb C^{d_{\mathrm{out}} \times d_{\mathrm{out}}}$ in diamond norm distance requires $\Omega(\sqrt{d_{\mathrm{in}}} / \varepsilon)$ queries, even in the strongest algorithmic model that admits ancillae, coherence, and adaptivity. This is due to the worst-case nature of the distance induced by the diamond norm. Motivated by this limitation and other theoretical and practical applications, we introduce an average-case analogue of the diamond norm, which we call the average-case imitation diamond (ACID) norm. In the weakest algorithmic model without ancillae, coherence, or adaptivity, we prove that testing identity to certain types of channels in ACID distance can be done with complexity independent of the dimensions of the channel, while for other types of channels the complexity depends on both the input and output dimensions. Building on previous work, we also show that identity to any fixed channel can be tested with $\tilde O(d_{\mathrm{in}} d_{\mathrm{out}}^{3/2} / \varepsilon^2)$ queries in ACID distance and $\tilde O(d_{\mathrm{in}}^2 d_{\mathrm{out}}^{3/2} / \varepsilon^2)$ queries in diamond distance in this model. Finally, we prove tight bounds on the complexity of channel tomography in ACID distance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月11日
Arxiv
0+阅读 · 2024年11月11日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年11月11日
Arxiv
0+阅读 · 2024年11月11日
Arxiv
38+阅读 · 2020年12月2日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员