Emerging reconfigurable optical communication technologies allow to enhance datacenter topologies with demand-aware links optimized towards traffic patterns. This paper studies the algorithmic problem of jointly optimizing topology and routing in such demand-aware networks to minimize congestion, along two dimensions: (1) splittable or unsplittable flows, and (2) whether routing is segregated, i.e., whether routes can or cannot combine both demand-aware and demand-oblivious (static) links. For splittable and segregated routing, we show that the problem is generally $2$-approximable, but APX-hard even for uniform demands induced by a bipartite demand graph. For unsplittable and segregated routing, we establish upper and lower bounds of $O\left(\log m/ \log\log m \right)$ and $\Omega\left(\log m/ \log\log m \right)$, respectively, for polynomial-time approximation algorithms, where $m$ is the number of static links. We further reveal that under un-/splittable and non-segregated routing, even for demands of a single source (resp., destination), the problem cannot be approximated better than $\Omega\left(\frac{c_{\max}}{c_{\min}} \right)$ unless P=NP, where $c_{\max}$ (resp., $c_{\min}$) denotes the maximum (resp., minimum) capacity. It remains NP-hard for uniform capacities, but is tractable for a single commodity and uniform capacities. Our trace-driven simulations show a significant reduction in network congestion compared to existing solutions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员