High quality bugs are key to training the next generation of language model based software engineering (SWE) agents. We introduce a novel method for synthetic generation of difficult and diverse bugs. Our method instructs SWE Agents to introduce a feature into the codebase whereby they may unintentionally break tests, resulting in bugs. Prior approaches often induce an out-of-distribution effect by generating bugs intentionally (e.g. by introducing local perturbation to existing code), which does not reflect realistic development processes. We perform qualitative analysis to demonstrate that our approach for generating bugs more closely reflects the patterns found in human-authored edits. Through extensive experiments, we demonstrate that our bugs provide more efficient training data for supervised fine-tuning, outperforming other bug datasets by 2% with half the training data (1.2k vs. 3k bugs). We train on our newly generated bugs in addition to existing bug datasets to get FrogBoss a state-of-the-art 32B parameter model on SWE-bench Verified with a pass@1 of 54.6% and FrogMini a state-of-the-art 14B model on SWE-bench Verified with a pass@1 of 45.3% on SWE-bench Verified averaged over three seeds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

程序猿的天敌 有时是一个不能碰的magic
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员