Coded distributed computing (CDC) introduced by Li \emph{et al.} can greatly reduce the communication load for MapReduce computing systems. In the general cascaded CDC with $K$ workers, $N$ input files and $Q$ Reduce functions, each input file will be mapped by $r$ workers and each Reduce function will be computed by $s$ workers such that coding techniques can be applied to achieve the maximum multicast gain. The main drawback of most existing CDC schemes is that they require the original data to be split into a large number of input files that grows exponentially with $K$, which can significantly increase the coding complexity and degrade system performance. In this paper, we first use a classic combinatorial structure $t$-design, for any integer $t\geq 2$, to develop a low-complexity and asymptotically optimal CDC with $r=s$. The main advantages of our scheme via $t$-design are two-fold: 1) having much smaller $N$ and $Q$ than the existing schemes under the same parameters $K$, $r$ and $s$; and 2) achieving smaller communication loads compared with the state-of-the-art schemes. Remarkably, unlike the previous schemes that realize on large operation fields, our scheme operates on the minimum binary field $\mathbb{F}_2$. Furthermore, we show that our construction method can incorporate the other combinatorial structures that have a similar property to $t$-design. For instance, we use $t$-GDD to obtain another asymptotically optimal CDC scheme over $\mathbb{F}_2$ that has different parameters from $t$-design. Finally, we show that our construction method can also be used to construct CDC schemes with $r\neq s$ that have small file number and Reduce function number.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Proximal Causal Inference With Text Data
Arxiv
0+阅读 · 2024年1月12日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Proximal Causal Inference With Text Data
Arxiv
0+阅读 · 2024年1月12日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员