Financial markets have experienced significant instabilities in recent years, creating unique challenges for trading and increasing interest in risk-averse strategies. Distributional Reinforcement Learning (RL) algorithms, which model the full distribution of returns rather than just expected values, offer a promising approach to managing market uncertainty. This paper investigates this potential by studying the effectiveness of three distributional RL algorithms for natural gas futures trading and exploring their capacity to develop risk-averse policies. Specifically, we analyze the performance and behavior of Categorical Deep Q-Network (C51), Quantile Regression Deep Q-Network (QR-DQN), and Implicit Quantile Network (IQN). To the best of our knowledge, these algorithms have never been applied in a trading context. These policies are compared against five Machine Learning (ML) baselines, using a detailed dataset provided by Predictive Layer SA, a company supplying ML-based strategies for energy trading. The main contributions of this study are as follows. (1) We demonstrate that distributional RL algorithms significantly outperform classical RL methods, with C51 achieving performance improvement of more than 32\%. (2) We show that training C51 and IQN to maximize CVaR produces risk-sensitive policies with adjustable risk aversion. Specifically, our ablation studies reveal that lower CVaR confidence levels increase risk aversion, while higher levels decrease it, offering flexible risk management options. In contrast, QR-DQN shows less predictable behavior. These findings emphasize the potential of distributional RL for developing adaptable, risk-averse trading strategies in volatile markets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员