We initiate a systematic study of the computational complexity of property testing, focusing on the relationship between query and time complexity. While traditional work in property testing has emphasized query complexity, relatively little is known about the computational hardness of property testers. Our goal is to chart the landscape of time-query interplay and develop tools for proving time complexity lower bounds. Our first contribution is a pair of time-query hierarchy theorems for property testing. For all suitable nondecreasing functions $q(n)$ and $t(n)$ with $t(n)\geq q(n)$, we construct properties with query complexity $\tilde{\Theta}(q(n))$ and time complexity $\tilde\Omega(t(n))$. Our weak hierarchy holds unconditionally, whereas the strong version-assuming the Strong Exponential Time Hypothesis-provides better control over the time complexity of the constructed properties. We then turn to halfspaces in $\mathbb{R}^d$, a fundamental class in property testing and learning theory. We study the problem of approximating the distance from the input function to the nearest halfspace within additive error $\epsilon$. For the distribution-free distance approximation problem, known algorithms achieve query complexity $O(d/\epsilon^2)$, but take time $\tilde{\Theta}(1/\epsilon^d)$. We provide a fine-grained justification for this gap: assuming the $k$-SUM conjecture, any algorithm must have running time ${\Omega}(1/\epsilon^{d/2})$. This fine-grained lower bound yields a provable separation between query and time complexity for a natural and well-studied (tolerant) testing problem. We also prove that any Statistical Query (SQ) algorithm under the standard Gaussian distribution requires $(1/\epsilon)^{\Omega(d)}$ queries if the queries are answered with additive error up to $\epsilon^{\Omega(d)}$, revealing a fundamental barrier even in the distribution-specific setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年6月30日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2023年8月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年6月30日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员