Lattice-based cryptography has emerged as one of the most prominent candidates for post-quantum cryptography, projected to be secure against the imminent threat of large-scale fault-tolerant quantum computers. The Shortest Vector Problem (SVP) is to find the shortest non-zero vector in a given lattice. It is fundamental to lattice-based cryptography and believed to be hard even for quantum computers. We study a natural generalization of the SVP known as the $K$-Densest Sub-lattice Problem ($K$-DSP): to find the densest $K$-dimensional sub-lattice of a given lattice. We formulate $K$-DSP as finding the first excited state of a Z-basis Hamiltonian, making $K$-DSP amenable to investigation via an array of quantum algorithms, including Grover search, quantum Gibbs sampling, adiabatic, and Variational Quantum Algorithms. The complexity of the algorithms depends on the basis through which the input lattice is presented. We present a classical polynomial-time algorithm that takes an arbitrary input basis and preprocesses it into inputs suited to quantum algorithms. With preprocessing, we prove that $O(KN^2)$ qubits suffice for solving $K$-DSP for $N$ dimensional input lattices. We empirically demonstrate the performance of a Quantum Approximate Optimization Algorithm $K$-DSP solver for low dimensions, highlighting the influence of a good preprocessed input basis. We then discuss the hardness of $K$-DSP in relation to the SVP, to see if there is reason to build post-quantum cryptography on $K$-DSP. We devise a quantum algorithm that solves $K$-DSP with run-time exponent $(5KN\log{N})/2$. Therefore, for fixed $K$, $K$-DSP is no more than polynomially harder than the SVP.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员