Weakly supervised object detection~(WSOD) has recently attracted much attention. However, the lack of bounding-box supervision makes its accuracy much lower than fully supervised object detection (FSOD), and currently modern FSOD techniques cannot be applied to WSOD. To bridge the performance and technical gaps between WSOD and FSOD, this paper proposes a new framework, Salvage of Supervision (SoS), with the key idea being to harness every potentially useful supervisory signal in WSOD: the weak image-level labels, the pseudo-labels, and the power of semi-supervised object detection. This paper proposes new approaches to utilize these weak and noisy signals effectively, and shows that each type of supervisory signal brings in notable improvements, outperforms existing WSOD methods (which mainly use only the weak labels) by large margins. The proposed SoS-WSOD method also has the ability to freely use modern FSOD techniques. SoS-WSOD achieves 64.4 $m\text{AP}_{50}$ on VOC2007, 61.9 $m\text{AP}_{50}$ on VOC2012 and 16.6 $m\text{AP}_{50:95}$ on MS-COCO, and also has fast inference speed. Ablations and visualization further verify the effectiveness of SoS.


翻译:然而,由于缺乏捆绑箱监督,其准确性大大低于完全监督的物体探测(FSOD),而且目前现代FSOD技术无法应用于WSOD。为了缩小WSOD和FSOD之间的性能和技术差距,本文件提议了一个新的框架,即“监督保护”系统,其关键想法是利用WSOD中所有潜在有用的监督信号:微弱的图像级别标签、假标签和半监督的物体探测能力。本文件提出了有效利用这些薄弱和噪音信号的新办法,并表明每一种监督信号都带来了显著的改进,超越了现有的WSOD方法(主要使用弱的标签)的功能和技术差距。拟议的SS-SOD方法还能够自由使用现代FSOD技术。 SoS-SOD在VOC-2007上实现了64.4 $m\ text{AP ⁇ 50},61.9 $\ text{CO=50} 在VOC2012 和16.65 NSS 快速校验和 MS-S-50 速度。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
相关基金
Top
微信扫码咨询专知VIP会员