In this paper, we have proposed a new strategy of using the landmark anchor node instead of a radio-based anchor node to obtain the virtual coordinates (landmarkID, DISTANCE) of moving troops or defense forces that will help in tracking and maneuvering the troops along a safe path within a GPS-denied battlefield environment. The proposed strategy implements landmark recognition using the Yolov5 model and landmark distance estimation using an efficient Stereo Matching Algorithm. We consider that a moving node carrying a low-power mobile device facilitated with a calibrated stereo vision camera that captures stereo images of a scene containing landmarks within the battlefield region whose locations are stored in an offline server residing within the device itself. We created a custom landmark image dataset called MSTLandmarkv1 with 34 landmark classes and another landmark stereo dataset of those 34 landmark instances called MSTLandmarkStereov1. We trained the YOLOv5 model with MSTLandmarkv1 dataset and achieved 0.95 mAP @ 0.5 IoU and 0.767 mAP @ [0.5: 0.95] IoU. We calculated the distance from a node to the landmark utilizing the bounding box coordinates and the depth map generated by the improved SGM algorithm using MSTLandmarkStereov1. The tuple of landmark IDs obtained from the detection result and the distances calculated by the SGM algorithm are stored as the virtual coordinates of a node. In future work, we will use these virtual coordinates to obtain the location of a node using an efficient trilateration algorithm and optimize the node position using the appropriate optimization method.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员