We introduce parametrisation of that property of the available training dataset, that necessitates an inhomogeneous correlation structure for the function that is learnt as a model of the relationship between the pair of variables, observations of which comprise the considered training data. We refer to a parametrisation of this property of a given training set, as its ``inhomogeneity parameter''. It is easy to compute this parameter for small-to-large datasets, and we demonstrate such computation on multiple publicly-available datasets, while also demonstrating that conventional ``non-stationarity'' of data does not imply a non-zero inhomogeneity parameter of the dataset. We prove that - within the probabilistic Gaussian Process-based learning approach - a training set with a non-zero inhomogeneity parameter renders it imperative, that the process that is invoked to model the sought function, be non-stationary. Following the learning of a real-world multivariate function with such a Process, quality and reliability of predictions at test inputs, are demonstrated to be affected by the inhomogeneity parameter of the training data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

训练集,在AI领域多指用于机器学习训练的数据,数据可以有标签的,也可以是无标签的。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员