Transformer neural networks are rapidly being integrated into state-of-the-art solutions for natural language processing (NLP) and computer vision. However, the complex structure of these models creates challenges for accelerating their execution on conventional electronic platforms. We propose the first silicon photonic hardware neural network accelerator called TRON for transformer-based models such as BERT, and Vision Transformers. Our analysis demonstrates that TRON exhibits at least 14x better throughput and 8x better energy efficiency, in comparison to state-of-the-art transformer accelerators.


翻译:Transformer神经网络正在被迅速整合到自然语言处理(NLP)和计算机视觉的最先进解决方案中。然而,这些模型的复杂结构对于在传统电子平台上加速其执行造成了挑战。本文提出了第一个硅光子硬件神经网络加速器TRON,旨在加速基于Transformer的模型(如BERT和视觉Transformer)。我们的分析表明,与最先进的Transformer加速器相比,TRON的吞吐量至少提高了14倍,能效至少提高了8倍。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员