Approximate Nearest Neighbor (ANN) search and Approximate Kernel Density Estimation (A-KDE) are fundamental problems at the core of modern machine learning, with broad applications in data analysis, information systems, and large-scale decision making. In massive and dynamic data streams, a central challenge is to design compact sketches that preserve essential structural properties of the data while enabling efficient queries. In this work, we develop new sketching algorithms that achieve sublinear space and query time guarantees for both ANN and A-KDE for a dynamic stream of data. For ANN in the streaming model, under natural assumptions, we design a sublinear sketch that requires only $\mathcal{O}(n^{1+\rho-\eta})$ memory by storing only a sublinear ($n^{-\eta}$) fraction of the total inputs, where $\rho$ is a parameter of the LSH family, and $0<\eta<1$. Our method supports sublinear query time, batch queries, and extends to the more general Turnstile model. While earlier works have focused on Exact NN, this is the first result on ANN that achieves near-optimal trade-offs between memory size and approximation error. Next, for A-KDE in the Sliding-Window model, we propose a sketch of size $\mathcal{O}\left(RW \cdot \frac{1}{\sqrt{1+\epsilon} - 1} \log^2 N\right)$, where $R$ is the number of sketch rows, $W$ is the LSH range, $N$ is the window size, and $\epsilon$ is the approximation error. This, to the best of our knowledge, is the first theoretical sublinear sketch guarantee for A-KDE in the Sliding-Window model. We complement our theoretical results with experiments on various real-world datasets, which show that the proposed sketches are lightweight and achieve consistently low error in practice.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员