The Network Revenue Management (NRM) problem is a well-known challenge in dynamic decision-making under uncertainty. In this problem, fixed resources must be allocated to serve customers over a finite horizon, while customers arrive according to a stochastic process. The typical NRM model assumes that customer arrivals are independent over time. However, in this paper, we explore a more general setting where customer arrivals over different periods can be correlated. We propose a model that assumes the existence of a system state, which determines customer arrivals for the current period. This system state evolves over time according to a time-inhomogeneous Markov chain. We show our model can be used to represent correlation in various settings. To solve the NRM problem under our correlated model, we derive a new linear programming (LP) approximation of the optimal policy. Our approximation provides an upper bound on the total expected value collected by the optimal policy. We use our LP to develop a new bid price policy, which computes bid prices for each system state and time period in a backward induction manner. The decision is then made by comparing the reward of the customer against the associated bid prices. Our policy guarantees to collect at least $1/(1+L)$ fraction of the total reward collected by the optimal policy, where $L$ denotes the maximum number of resources required by a customer. In summary, our work presents a Markovian model for correlated customer arrivals in the NRM problem and provides a new LP approximation for solving the problem under this model. We derive a new bid price policy and provides a theoretical guarantee of the performance of the policy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员