Stationary memoryless sources produce two correlated random sequences $X^n$ and $Y^n$. A guesser seeks to recover $X^n$ in two stages, by first guessing $Y^n$ and then $X^n$. The contributions of this work are twofold: (1) We characterize the least achievable exponential growth rate (in $n$) of any positive $\rho$-th moment of the total number of guesses when $Y^n$ is obtained by applying a deterministic function $f$ component-wise to $X^n$. We prove that, depending on $f$, the least exponential growth rate in the two-stage setup is lower than when guessing $X^n$ directly. We further propose a simple Huffman code-based construction of a function $f$ that is a viable candidate for the minimization of the least exponential growth rate in the two-stage guessing setup. (2) We characterize the least achievable exponential growth rate of the $\rho$-th moment of the total number of guesses required to recover $X^n$ when Stage 1 need not end with a correct guess of $Y^n$ and without assumptions on the stationary memoryless sources producing $X^n$ and $Y^n$.


翻译:没有固定内存的源源产生两个相关的随机序列美元和美元。一个猜测者试图在两个阶段中收回美元,先猜测美元,然后假设美元,然后假设美元,然后美元。这项工作的贡献是双重的:(1) 我们将任何正值美元(美元)的最小指数增长率(单位为美元)确定为每千元总数第一刻,而美元是通过确定性功能获得的。 我们证明,根据美元,两阶段设置中最小的指数增长率低于美元,这取决于美元,在两阶段设置中,以美元直接猜算时,以美元为单位。我们进一步建议简单哈夫曼代码构建一个功能,以美元为单位,这是将两阶段假设中最小的指数增长率最小化的一个可行选择。 (2) 我们确定,在第一阶段需要的不是美元时,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以最小的指数增长率最低。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
319+阅读 · 2020年11月26日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月3日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
319+阅读 · 2020年11月26日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月3日
Top
微信扫码咨询专知VIP会员