Large language models (LLM) trained using the next-token-prediction objective, such as GPT3 and PaLM, have revolutionized natural language processing in recent years by showing impressive zero-shot and few-shot capabilities across a wide range of tasks. In this work, we propose a simple technique that significantly boosts the performance of LLMs without adding computational cost. Our key observation is that, by performing the next token prediction task with randomly selected past tokens masked out, we can improve the quality of the learned representations for downstream language understanding tasks. We hypothesize that randomly masking past tokens prevents over-attending to recent tokens and encourages attention to tokens in the distant past. We find that our method, Forgetful Causal Masking (FCM), significantly improves both few-shot and finetuning performance of PaLM. We further consider a simple extension, T-FCM, which introduces bidirectional context to causal language model without altering the sequence order, and further improves finetuning performance.


翻译:使用下端口令目标(如GPT3和PALM)培训的大型语言模型(LLM)近年来通过在一系列任务中显示令人印象深刻的零射和几射能力,使自然语言处理发生了革命性的变化。在这项工作中,我们提出了一个简单的方法,在不增加计算成本的情况下大大提升了LLM的性能。我们的主要观察是,通过以随机选择的过去代号来完成下一个象征性的预测任务,我们可以提高为下游语言理解任务所学习的演示的质量。我们假设,随机遮盖过去代号防止过度使用最近的代号,并鼓励注意远古代代代代号。我们发现,我们的方法,即遗忘的Causal蒙码(FCM),大大改进了PALM的微光和微调性性能。我们进一步考虑一个简单的扩展,即T-FCM,在不改变序列顺序顺序的情况下引入因果关系语言模型的双向环境,并进一步改进性能。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
19+阅读 · 2021年6月15日
Arxiv
13+阅读 · 2021年3月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员