Memory is an important cognitive function for humans. How a brain with such a small power can complete such a complex memory function, the working mechanism behind this is undoubtedly fascinating. Engram theory views memory as the co-activation of specific neuronal clusters. From the perspective of graph theory, nodes represent neurons, and directed edges represent synapses. Then the memory engram is the connected subgraph formed between the activated nodes. In this paper, we use subgraphs as physical carriers of information and propose a parallel distributed information storage algorithm based on node scale in active-directed graphs. An active-directed graph is defined as a graph in which each node has autonomous and independent behavior and relies only on information obtained within the local field of view to make decisions. Unlike static directed graphs used for recording facts, active-directed graphs are decentralized like biological neuron networks and do not have a super manager who has a global view and can control the behavior of each node. Distinct from traditional algorithms with a global field of view, this algorithm is characterized by nodes collaborating globally on resource usage through their limited local field of view. While this strategy may not achieve global optimality as well as algorithms with a global field of view, it offers better robustness, concurrency, decentralization, and bioviability. Finally, it was tested in network capacity, fault tolerance, and robustness. It was found that the algorithm exhibits a larger network capacity in a more sparse network structure because the subgraph generated by a single sample is not a whole but consists of multiple weakly connected components. In this case, the network capacity can be understood as the number of permutations of several weakly connected components in the network.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员